广东省汕尾市陆丰市民声学校八年级数学上册 13.3.1 等腰三角形课件 (新版)新人教版.ppt_第1页
广东省汕尾市陆丰市民声学校八年级数学上册 13.3.1 等腰三角形课件 (新版)新人教版.ppt_第2页
广东省汕尾市陆丰市民声学校八年级数学上册 13.3.1 等腰三角形课件 (新版)新人教版.ppt_第3页
广东省汕尾市陆丰市民声学校八年级数学上册 13.3.1 等腰三角形课件 (新版)新人教版.ppt_第4页
广东省汕尾市陆丰市民声学校八年级数学上册 13.3.1 等腰三角形课件 (新版)新人教版.ppt_第5页
已阅读5页,还剩36页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

八年级上册 13 3等腰三角形 学习目标 1 探索并证明等腰三角形的性质及判定 2 能利用性质证明两个角相等或两条线段相等 3 结合等腰三角形性质的探索与证明过程 体会轴对称在研究几何问题中的作用 学习重点 探索并证明等腰三角形性质与判定 如图所示 把一张长方形的纸按图中虚线对折 并剪去阴影部分 再把它展开 得到的 abc有什么特点 探索并证明等腰三角形的性质 探索并证明等腰三角形的性质 仔细观察自己剪出的等腰三角形纸片 你能发现这个等腰三角形有什么特征吗 等腰三角形的特征 1 等腰三角形的两个底角相等 2 等腰三角形的顶角平分线 底边上的中线 底边上的高互相重合 探索并证明等腰三角形的性质 同学们剪下的等腰三角形纸片大小不同 形状各异 是否都具有上述所概括的特征 探索并证明等腰三角形的性质 在练习本上任意画一个等腰三角形 把它剪下来 折一折 上面得出的结论仍然成立吗 由此你能概括出等腰三角形的性质吗 探索并证明等腰三角形的性质 探索并证明等腰三角形的性质 等腰三角形的性质 1 等腰三角形的两个底角相等 2 等腰三角形的顶角平分线 底边上的中线 底边上的高互相重合 利用实验操作的方法 我们发现并概括出等腰三角形的性质1和性质2 对于性质1 你能通过严格的逻辑推理证明这个结论吗 1 你能根据结论画出图形 写出已知 求证吗 2 结合所画的图形 你认为证明两个底角相等的思路是什么 3 如何在一个等腰三角形中构造出两个全等三角形呢 从剪图 折纸的过程中你能获得什么启发 探索并证明等腰三角形的性质 已知 如图 abc中 ab ac 求证 b c 探索并证明等腰三角形的性质 证明 作底边的中线ad ab ac bd cd ad ad abd acd sss b c 你还有其他方法证明性质1吗 探索并证明等腰三角形的性质 可以作底边的高线或顶角的角平分线 性质2可以分解为三个命题 本节课证明 等腰三角形的底边上的中线也是底边上的高和顶角平分线 探索并证明等腰三角形的性质 已知 如图 abc中 ab ac ad是底边bc的中线 求证 bad cad ad bc 探索并证明等腰三角形的性质 证明 ad是底边bc的中线 bd cd ab ac bd cd ad ad abd acd sss 探索并证明等腰三角形的性质 已知 如图 abc中 ab ac ad是底边bc的中线 求证 bad cad ad bc 证明 bad cad adb adc adb adc 180 adb 90 ad bc 探索并证明等腰三角形的性质 在等腰三角形性质的探索过程和证明过程中 折痕 辅助线 发挥了非常重要的作用 由此 你能发现等腰三角形具有什么特征 等腰三角形是轴对称图形 底边上的中线 顶角平分线 底边上的高 所在直线就是它的对称轴 课堂练习 练习1填空 1 如图 abc中 ab ac a 36 则 b 课堂练习 练习1填空 2 如图 abc中 ab ac b 36 则 a 课堂练习 练习1填空 3 已知等腰三角形的一个内角为70 则它的另外两个内角的度数分别是 课堂练习 练习2如图 abc是等腰直角三角形 ab ac bac 90 ad是底边bc上的高 标出 b c bad dac的度数 并写出图中所有相等的线段 课堂练习 练习3如图 abc中 ab ac 点d在ac上 且bd bc ad 求 abc各角的度数 1 本节课学习了哪些主要内容 2 我们是怎么探究等腰三角形的性质的 3 本节课你学到了哪些证明线段相等或角相等的方法 课堂小结 问题等腰三角形性质定理的内容是什么 这个命题的题设和结论分别是什么 性质定理的条件是 一个三角形中有两条边相等 结论 这两条边所对的角相等 探索等腰三角形的判定定理 作顶角的平分线或底边上的高或底边的中线 将一个三角形的问题转化为两个全等三角形来证明两个角相等 探索等腰三角形的判定定理 思考性质定理证明方法是什么 探索等腰三角形的判定定理 问题一个三角形满足什么条件是等腰三角形 这两个角所对的边相等 探索等腰三角形的判定定理 思考1如果一个三角形有两个角相等 那么这两个角所对的边有什么关系 题设 一个三角形有两个角相等 结论 这两个角所对的边相等 探索等腰三角形的判定定理 思考2这个命题的题设和结论又分别是什么呢 如何证明这个命题 探索等腰三角形的判定定理 问题类比等腰三角形性质定理的证明方法 你能选择一种来证明这个命题吗 证明 过a点作ae bc 垂足为e 在 abe和 ace中 探索等腰三角形的判定定理 abe ace ab ac 追问你还有其他证明方法吗 已知 如图 在 abc中 b c 求证 ab ac 不能 探索等腰三角形的判定定理 思考能作底边bc上的中线吗 思考与等腰三角形性质进行比较看有什么区别 探索等腰三角形的判定定理 等腰三角形的判定方法 如果一个三角形有两个角相等 那么这两个角所对的边也相等 简写成 等角对等边 符号语言 在 abc中 b c ab ac 共有3个等腰三角形 证明略 课堂练习 练习1如图 a 36 dbc 36 c 72 图中一共有几个等腰三角形 找出其中的一个等腰三角形给予证明 巩固等腰三角形的判定定理 例1求证 如果三角形一个外角的平分线平行于三角形的一边 那么这个三角形是等腰三角形 巩固等腰三角形的判定定理 已知 cae是 abc的外角 1 2 ad bc 求证 ab ac 巩固等腰三角形的判定定理 1 ab ac在同一个三角形中 应选择 等角对等边 2 建立三角形的外角和与之不相邻的内角关系 3 利用平行转移已知角 最终使得相等的角转化到同一个三角形中 追问要证明ab ac 应如何选择证明方法 证明 ad bc 1 b 2 c 巩固等腰三角形的判定定理 已知 cae是 abc的外角 1 2 ad bc 求证 ab ac 两直线平行 同位角相等 两直线平行 内错角相等 等边对等角 巩固等腰三角形的判定定理 已知 cae是 abc的外角 1 2 ad bc 求证 ab ac 证明 1 2 b c ab ac d 巩固等腰三角形的判定定理 例2已知等腰三角形底边长为a 底边上的高的长为h 求作这个等腰三角形 作法 1 作线段ab a 2 作线段ab的垂直平分线mn 与ab相交于点d 3 在mn上取一点c 使dc h 4 连接ac bc 则 abc就是所求作的等腰三角形 课堂练习 练习2如图 把一张长方形的纸沿着对角线折叠 重合部分是一个等腰三角形吗 为什么 课堂练习 练习3求证 如

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论