




全文预览已结束
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
14.2.2一次函数教学目标了解待定系数法的思维方式与特点.明确两个条件确定一个一次函数、一个条件确定一个正比例函数的基本事实.会根据所给信息用待定系数法求一次函数解析式,发展解决问题的能力.进一步体验并初步形成“数形结合”的思想方法.教学重点与难点重点:根据所给信息确定一次函数的表达式.难点:培养数形结合解决问题的能力.教学设计复习与反思1.复习:画出函数y=x与y=3x-1的图象2.反思:你在作这两个函数图象时,分别描了几个点?你为何选取这几个点?可以有不同取法吗?注:前面学习中是通过描点法画出一次函数的图象,发现它们的特点与性质.再利用发现的结论形成图象的简便画法.此处则是对简便画法本身的进一步反思,从而初步感知基本量,为待定系数法思想的形成做好准备.3.引入:在上节课中我们学习了在给定一次函数表达式的前提下,我们可以说出它的图象特征及有关性质;反之,如果给你信息,你能否求出函数的表达式呢?这将是本节课我们要研究的问题.提出问题、形成思路1.求下图中直线的函数表达式: 图1 图2注:在前面学习中,学生都是先有解析式(数),再由数出发探求.这里反过来,是先有图再探求数,是一种思维的逆向.2.分析与思考:根据原有经验,图1的解析式学生可凭经验与直觉答出.但图2的解析式凭直觉不易得出.应引导学生进行理性思考.注:给学生充分的时间进行分析与思考,体现课堂的动态生成与灵动.经历从直觉经验到理性思考的过程,也促进学生体会数学学习的特点与魅力.从图象知,图1中直线的函数是正比例函数,故其解析式必为y=kx+b形式,关键是如何求出k的值;同样由图可知图象经过点(1,2),所以该点坐标必适合解析式,将坐标代入y=kx即可求出k的值.图2中直线的函数是一次函数,故其解析式为y=kx+b形式,同样代入直线上两点(2,0)与(0,3)即可求出k、b,确定解析式.注:教学时,应让学生充分表达自己的想法,并在讨论交流中清晰思路.3.反思小结:确定正比例函数的表达式需要1个条件,确定一次函数的表达式需要2个条件.初步应用、感悟新知1.例题:已知一次函数的图象经过点(3,5)与(-4,-9).求这个一次函数的解析式.注:在前面形成思路的基础上,此题的解答应突出解题过程的完整.教师应作好板演示范.这个问题涉及数学对象的一个本质概念基本量.鼓励学生做这样的思考,有助于增强其对数学对象的理解.与前面的例子相比,从直观的图形信息到文字形式展示,本质上是一样的,更突出2个基本量的事实.适时进行规范解题过程的示范是必要的.2.回顾并介绍:像这样先设出函数解析式,再根据条件确定解析式中未知的系数,从而具体写出这个式子的方法,叫做待定系数法.3.反思体会:在前面的学习过程中我们发现数与形之间是怎样结合互化的.对数形基本状态的概括整理,使原有认知清晰化、结构化.综合运用1.写出两个一次函数,使它们的图象都经过点(-2,3).2.生物学家研究表明,某种蛇的长度y(cm)是其尾长x(cm)的一次函数,当蛇的尾长为6cm时,蛇长为45.5cm;当尾长为14cm时,蛇长为105.5cm.当一条蛇的尾长为10cm时,这条蛇的长度是多少?注:在分析解决问题中巩固加深已有知识与经验,发展解决问题的能力.4道题目可视学生情况机动处理,着眼于学生的发展,体现教学的层次性.第1、2两题当堂解决,由学生完成;下面3、4两题可视教学情况灵活处理(比如作为选做题).3.教科书P.35 第6题:一个一次函数的图象是经过原点的直线,并且这条直线过第四象限及点(2,-3a)与点(a,-6),求这个函数的解析式.4.小明将父母给的零用钱按每月相等的数额存放在储蓄盒内,准备捐给希望工程,盒内钱数y(元)与存钱月数x(月)之间的关系如图所示,根据下图回答下列问题:求出y关于x的函数解析式.根据关系式计算,小明经过几个月才能存够200元?回顾反思1.用待定系数法求函数解析式的一般步骤(过程)2.数形结合解决问题的一般思路.作业1.必做题:教科书P.32 练习1、2,35页习题11.2第5题2.选做题:教科书P.35 第7题.3.备选题:(1)若一次函数y=3x-b的图象经过点P(1,-1),则该函数图象必经过点( )A.A(-1,1) B.B(2,2) C.C(-2,2) D.D(2,-2)(2)老师给出一个函数,甲、乙、丙各正确地指出了这个函数的一个性质:甲:函数的图象经过第一象限;乙:函数的图象经过第二象限;丙:在每个象限内,y随着x的增大而减小.请你根据他们的叙述构造满足上述性质的一个函数,并写出它的函数关系式:(3)如右图,大拇指与小拇指尽量张开时,两指尖的距离称为指距.某项研究表明,一般情况下人的身高h是指距d的一次函数.下表是测得的指距与身高的一组数据:指距d(cm)20212223身高h(cm)160169178187求出h与d之间的函数关系式(不要求写出自变量d的取值范围);某人身高为196cm,一般情况下他的指距应是多少?设计思想在前面几节的学习中,都是已知函数解析式,并由此出发研究函数的图象与性质,通过研究得到结论去思考图象的简便画法.其思路基本上局限于从数到形的单向思维,在学习的开始阶段,这也有利于学生更好的理解掌握前面的知识,而不把思维搞混.从本节开始,学生进入从形到数的阶段,这相对于原有经验,是一种逆向的思维.这既是一个要突破的难点,更对学生全面体验并初步形成“数形结合”的思想方法有着重要的意义.教学设计一开始,先让学生画出一个正比例函数与一个一次函数的图象,通过对画法的反思自然涉及并引入本节主题.在介绍待定系数法之前,先jj学生观察两个图象,探求它们的解析式,这也是充分利用学生原有经验,引发感悟,理解待定系数法的一般思想.其后再出示例题,有两个非特殊的一般
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年安全员A证证模拟考试题库及答案
- 2025湖南怀化市溆浦县社会保险服务中心公益性岗位招聘1人考试参考试题及答案解析
- 2025年婴幼儿奶粉品牌战略联盟及销售合同
- 2025典当行股权转让与业务创新服务协议
- 2025年度水利工程生态补偿与保护合同规范
- 2025版单位劳动政策研究与应用合同
- 2025年度知识产权质押融资保证金担保合同范本
- 动漫产业跨领域协同创新案例研究:2025年产业融合实践分析
- 2025版社区物业与社区居民关系建设委托管理合同
- 2025版全新铲车租赁及节能降耗合同
- 《工程制图》课件
- 餐饮行业数字化门店运营与管理效率提升报告
- S7-1200 PLC原理及应用基础 课件 第5章 S7-1200 PLC的模拟量处理
- 2024年四川省古蔺县事业单位公开招聘医疗卫生岗笔试题带答案
- 2025-2030中国驾驶培训行业市场发展前瞻及投资战略研究报告
- 临床医学研究中的数据管理与分析
- 成品油行业知识培训课件
- 2024年版中华民族共同体概论专家大讲堂课件全集第10章至16章节讲根据高等教育出版社教材制作
- 生产过程控制制度
- 糖尿病足的预防和护理
- 导尿管相关感染防控课件
评论
0/150
提交评论