大气科学中的数学方法.doc_第1页
大气科学中的数学方法.doc_第2页
大气科学中的数学方法.doc_第3页
大气科学中的数学方法.doc_第4页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

大气科学中的数学方法(复习题)3、回归分析:研究一个随机变量Y对另一个(X)或一组(X1,X2,Xk)变量的相依关系的统计分析方法。回归分析(regression analysis)是确定两种或两种以上变数间相互依赖的定量关系的一种统计分析方法。运用十分广泛,回归分析按照涉及的自变量的多少,可分为一元回归分析和多元回归分析;按照自变量和因变量之间的关系类型,可分为线性回归分析和非线性回归分析。一元线性回归,即模型为YabX相关分析:研究随机变量之间相关性的统计分析方法。相关分析(correlation analysis),相关分析是研究现象之间是否存在某种依存关系,并对具体有依存关系的现象探讨其相关方向以及相关程度,是研究随机变量之间的相关关系的一种统计方法。相关系数:衡量两个变量线性相关密切程度的量。对于容量为n的两个变量x,y的相关系数rxy可写为 ,式中 是两变量的平均值。相关系数是变量之间相关程度的指标。样本相关系数用r表示,总体相关系数用表示,相关系数的取值范围为-1,1。|r|值越大,误差Q越小,变量之间的线性相关程度越高;|r|值越接近0,Q越大,变量之间的线性相关程度越低。回归分析与相关分析的关系:相关分析与回归分析在实际应用中有密切关系。然而在回归分析中,所关心的是一个随机变量Y对另一个(或一组)随机变量X的依赖关系的函数形式。而在相关分析中 ,所讨论的变量的地位一样,分析侧重于随机变量之间的种种相关特征。回归分析与相关分析的区别:回归分析则是研究变量之间相互关系的具体形式,它对具有相关关系的变量之间的数量联系进行测定,确定一个相关的数学方程式,根据这个数学方程式可以从已知量来推测未知量,从而为估算和预测提供了一个重要的方法。相关分析可以不必确定变量中哪个是自变量,哪个是因变量,其所涉及的变量可以都是随机变量。回归分析则必须事先研究确定具有相关关系的变量中哪个为自变量,哪个为因变量。一般地说,回归分析中因变量是随机的,而把自变量作为研究时给定的非随机变量。4、主成分分析:一种统计方法,它对多变量表示数据点集合寻找尽可能少的正交矢量表征数据信息特征。内容:主成分分析是设法将原来众多具有一定相关性(比如P个指标),重新组合成一组新的互相无关的综合指标来代替原来的指标。通常数学上的处理就是将原来P个指标作线性组合,作为新的综合指标。最经典的做法就是用F1(选取的第一个线性组合,即第一个综合指标)的方差来表达,即Var(F1)越大,表示F1包含的信息越多。因此在所有的线性组合中选取的F1应该是方差最大的,故称F1为第一主成分。如果第一主成分不足以代表原来P个指标的信息,再考虑选取F2即选第二个线性组合,为了有效地反映原来信息,F1已有的信息就不需要再出现再F2中,用数学语言表达就是要求Cov(F1, F2)=0,则称F2为第二主成分,依此类推可以构造出第三、第四,第P个主成分。原理:设法将原来变量重新组合成一组新的互相无关的几个综合变量,同时根据实际需要从中可以取出几个较少的综合变量尽可能多地反映原来变量的信息的统计方法叫做主成分分析或称主分量分析,也是数学上处理降维的一种方法因子分析:把若干个变量看成由某些公共的因素所制约,并把这些公共因素分解出来的分析方法。主成分分析 与因子分析的异同:主成分分析主要是作为一种探索性的技术,在分析者进行多元数据分析之前,用主成分分析来分析数据,让自己对数据有一个大致的了解是非常重要的。主成分分析一般很少单独使用:a,了解数据。(screening the data),b,和cluster analysis一起使用,c,和判别分析一起使用,比如当变量很多,个案数不多,直接使用判别分析可能无解,这时候可以使用主成份发对变量简化。(reduce dimensionality)d,在多元回归中,主成分分析可以帮助判断是否存在共线性(条件指数),还可以用来处理共线性。 1、因子分析中是把变量表示成各因子的线性组合,而主成分分析中则是把主成分表示成个变量的线性组合。 2、主成分分析的重点在于解释个变量的总方差,而因子分析则把重点放在解释各变量之间的协方差。 3、主成分分析中不需要有假设(assumptions),因子分析则需要一些假设。因子分析的假设包括:各个共同因子之间不相关,特殊因子(specific factor)之间也不相关,共同因子和特殊因子之间也不相关。 4、主成分分析中,当给定的协方差矩阵或者相关矩阵的特征值是唯一的时候,的主成分一般是独特的;而因子分析中因子不是独特的,可以旋转得到不同的因子。 5、在因子分析中,因子个数需要分析者指定(spss根据一定的条件自动设定,只要是特征值大于1的因子进入分析),而指定的因子数量不同而结果不同。在主成分分析中,成分的数量是一定的,一般有几个变量就有几个主成分。和主成分分析相比,由于因子分析可以使用旋转技术帮助解释因子,在解释方面更加有优势。大致说来,当需要寻找潜在的因子,并对这些因子进行解释的时候,更加倾向于使用因子分析,并且借助旋转技术帮助更好解释。而如果想把现有的变量变成少数几个新的变量(新的变量几乎带有原来所有变量的信息)来进入后续的分析,则可以使用主成分分析。当然,这中情况也可以使用因子得分做到。所以这中区分不是绝对的。 在算法上,主成分分析和因子分析很类似,不过,在因子分析中所采用的协方差矩阵的对角元素不在是变量的方差,而是和变量对应的共同度(变量方差中被各因子所解释的部分5、聚类分析:聚类分析指将物理或抽象对象的集合分组成为由类似的对象组成的多个类的分析过程按照某种距离算法对数据点分类。把观测或变量按一定规则分成组或类的数学分析方法内容:聚类与分类的不同在于,聚类所要求划分的类是未知的。 聚类是将数据分类到不同的类或者簇这样的一个过程,所以同一个簇中的对象有很大的相似性,而不同簇间的对象有很大的相异性。 从统计学的观点看,聚类分析是通过数据建模简化数据的一种方法。传统的统计聚类分析方法包括系统聚类法、分解法、加入法、动态聚类法、有序样品聚类、有重叠聚类和模糊聚类等。采用k-均值、k-中心点等算法的聚类分析工具已被加入到许多著名的统计分析软件包中,如SPSS、SAS等。 从机器学习的角度讲,簇相当于隐藏模式。聚类是搜索簇的无监督学习过程。与分类不同,无监督学习不依赖预先定义的类或带类标记的训练实例,需要由聚类学习算法自动确定标记,而分类学习的实例或数据对象有类别标记。聚类是观察式学习,而不是示例式的学习。 从实际应用的角度看,聚类分析是数据挖掘的主要任务之一。而且聚类能够作为一个独立的工具获得数据的分布状况,观察每一簇数据的特征,集中对特定的聚簇集合作进一步地分析。聚类分析还可以作为其他算法(如分类和定性归纳算法)的预处理步骤。在聚类分析中,通常我们将根据分类对象的不同分为Q型聚类分析和R型聚类分析两大类。 R型聚类分析是对变量进行分类处理,Q型聚类分析是对样本进行分类处理。 R型聚类分析的主要作用是: 1、不但可以了解个别变量之间的关系的亲疏程度,而且可以了解各个变量组合之间的亲疏程度。 2、根据变量的分类结果以及它们之间的关系,可以选择主要变量进行回归分析或Q型聚类分析。 Q型聚类分析的优点是: 1、可以综合利用多个变量的信息对样本进行分类; 2、分类结果是直观的,聚类谱系图非常清楚地表现其数值分类结果; 3、聚类分析所得到的结果比传统分类方法更细致、全面、合理。 为了进行聚类分析,首先我们需要定义样品间的距离。 常见的距离有 : 绝对值距离 欧氏距离 明科夫斯基距离 切比雪夫距离。动态聚类:聚类分析的一种,在数据点分类过程中按照某种准则动态调整数据点类型归属。系统聚类:聚类分析的一种,在数据点分类过程中按照某种距离模式对数据点类型归属一次性判别。特点:事先无须知道分类对象的分类结构,而只需要一批地理数据;然后选好分类统计量,并按一定的方法步骤进行计算;最后便能自然地、客观地得到一张完整的分类系统图。6、判别分析:在已知总体数目的情况下,判断某次抽样个体来自哪一个总体的统计方法。气象学中常用此法对预报量(如有无降水出现)做判别预报。Fisher判别的基本思路就是投影,针对P维空间中的某点x=(x1,x2,x3,xp)寻找一个能使它降为一维数值的线性函数y(x): y(x)= Cjxj 然后应用这个线性函数把P维空间中的已知类别总体以及求知类别归属的样本都变换为一维数据,再根据其间的亲疏程度把未知归属的样本点判定其归属。这个线性函数应该能够在把P维空间中的所有点转化为一维数值之后,既能最大限度地缩小

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论