免费预览已结束,剩余39页可下载查看
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
苏教版七下教案-第七章 平面图形的认识(二)课 题第七章 平面图形的认识(二)课时分配本课(章节)需 2 课时本 节 课 为 第 1 课时为 本 学期总第 课时71探索直线平行的条件教学目标1 能够熟练识别同位角,内错角,同旁内角2会用同位角相等判定二条直线平行重 点识别同位角,内错角,同旁内角用同位角相等判定二条直线平行难 点同上教学方法讲练结合、探索交流课型新授课教具投影仪教 师 活 动学 生 活 动预备知识:三线八角两条直线ab cd与直线ef相交,交点分别为e f如图(1)则称直线ab cd 被直线ef所截,直线ef为截线。 4 1 3 2 8 5 7 6 (图1) 二条直线ab cd 被直线ef所截可得8个角,即所谓“三线八角”。 这八个角中有对顶角:1与3,2与4,5与7,6与8。 邻补角有:1与2,2与3,3与4,5与6,6与7,7与8,8与5。还有同位角,内错角,同旁内角。(1)同位角:两条直线被第三条直线所截,在二条直线的同侧,且在第三条直线的同旁的二个角叫同位角。如图中的1与5分别在直线ab cd的上侧,又在第三条直线ef的右侧,所以1与5是同位角,它们的位置相同,在图中还有2与6,4与8,3与7也是同位角。(2)内错角:两条直线被第三条直线所截,在二条直线的内侧,且在第三条直线的两旁的二个角叫内错角。如上图中2与8在直线ab、 cd 的内侧(既ab 、cd之间),且在ed的两旁,所以2与8是内错角。同理,3与5也是内错角。(3)同旁内角:两条直线被第三条直线所截,在两条直线的你侧,且在第三条直线的同旁的两个角叫同旁内角。如上图中的2与5在直线ab cd内侧又在ef的同旁,所以2与5是同安排能够内角,同理,3与8也是同旁内角。因此,两条直线被第三条直线所截,共得4对同位角,2对内错角,2对同旁内角。 新课讲解: 首先回顾上学期学习画平行线的方法(师演示)如图2 1 1 1 2 2 2其实质就是图中1与2相等,则所画的直线a,b就平行。如果1与2不相等,则a与b平行吗?(生回答)。由预备知识1与2是一组同位角,则同位角相等两直线平行。注:同位角相等,则直线平行,如图所示推理过程可表示为 1 2因为1与2是a b被c所截得的同位角,且1=2,那麽ab。例题1:如图,1=c,2=c,请找出图中互相平行的直线,并说明理由。 a 1 b 解:(1)abcd c d 2 因为1与c是ab cd被ac截成的同位角,且1=c,所以ab cd。(2)acbd。因为2与c是bd ac被cd截成的同位角,且2=c,所以acbd。练习:第8页 第1、2题小结:同位角相等两直线平行。教学素材:a组题:1、如图所示:如图1,同位角有 对,内错角有 对,同旁内角有 对。如图2,同位角有 对,内错角有 对,同旁内角有 对。如图3,同位角有 对,内错角有 对,同旁内角有 对。如图4,同位角有 对,内错角有 对,同旁内角有 对。 a a a a d m a n b b d e o b c b c b c 图1 图2 图3 图4b组题: 已知直线ab,bc(如图所示)求证ab a c b学生回答由学生自己先做(或互相讨论),然后回答,若有答不全的,教师(或其他学生)补充学生板演作业第10页第1、2、3、4题板 书 设 计复习 例1 板演 例2 教 学 后 记课 题第七章 平面图形的认识(二)课时分配本课(章节)需 2 课时本 节 课 为 第 2 课时为 本 学期总第 课时71探索直线平行的条件(2)教学目标会用内错角相等判定二条直线平行会用同旁内角互补判定二条直线平行重 点推导的过程难 点证明推理教学方法讲练结合、探索交流课型新授课教具投影仪教 师 活 动学 生 活 动引入:两条直线被第三条直线所截,形成的八个角中有同位角,内错角,同旁内角。、如果截得的同位角相等,那麽两直线平行。请议一议1如图,直线a,b被直线c所截,2=3。直线a与直线b平行吗?试说明理由。 1 3 22如图,直线a, b被直线c所截,2+3=180,直线a与直线b 平行吗?为什么? 1 3 2故1、内错角相等,两直线平行。 即直线a,b被直线c所截,所得的两对内错角中,如果有一对想等,那麽ab,如图若1=2,则ab.应用格式:1=2(已知)ab(内错角相等,两直线平行)2、同旁内角互补,两直线平行 即直线a,b被直线c所截,所得的两对同旁内角中,若有一对互补,则ab.如图若1+2=180,则ab应用格式: 1+2=180( 已知)ab(同旁内角互补,两直线平行) 例题1:如图,1=2,b+bde=180,图中那些线互相平行,为什么? a d 1 e 2 b f c解:(1)abef 因为1与2是ab ef被de截成的内错角,且1=2。 所以abef。 (2)debc 以为b与bde是bc de被ab截成的同旁内角,且b+bde=180。 所以debc练习:第1页第1、2题小结:内错角相等 同位角相等 平行同旁内角互补教学素材:a组题:如图 ,已知直线a,b被直线c所截, 1 下列条件能判断ab的是( ) 2 a、1=2 b、2=3 5 3 c、1+4=180 d、2+5=180 4 db组题: 1 已知(如图)b=c,dac=b+c, a 2 2 eae平分dac,求证aebc b c学生回答由学生自己先做(或互相讨论),然后回答,若有答不全的,教师(或其他学生)补充学生板演作业第11页第6789题板 书 设 计复习 例1 板演 例2 教 学 后 记课 题第七章 平面图形的认识(二)课时分配本课(章节)需 课时本 节 课 为 第 课时为 本 学期总第 课时72探索平行线的性质教学目标掌握平行线的性质。运用平行线的性质及判定方法解决问题重 点三条性质的推导运用平行线的性质及判定方法解决问题难 点运用平行线的性质及判定方法解决问题时的过程教学方法讲练结合、探索交流课型新授课教具投影仪教 师 活 动学 生 活 动情景设置:1在练习本上画两条平行线ab、cd,再画直线mn与直线ab、cd相交如图 m a 3 1 b 7 5 c 4 2 d 8 6 n指出图中的同位角、内错角、同旁内角。2将图剪成(1)(2)(3)(4)所示的四块。分别把图中的同位角、内错角重叠你会发现什么? a 3 1 b (1) a 7 5 b c 4 2 d (2) (3) c 8 6 d (4)3将图(2)、 (3)分别剪成两部分,并按图中所示拼在一起,你发现每对同旁内角有什么关系? 7 4 7 4 5 2 5 2由上可知 两直线平行,同位角相等 两直线平行,内错角相等 两直线平行,同旁内角互补新课讲解:议一议你能根据“两直线平行,内错角相等”,说明“两直线平行,内错角相等”成立的理由吗? c 1 a如图 3因为ab, 2 b所以1=2,又因为1与3是对顶角,1=3,所以2=3。类似地,请根据“两直线平行,同位角相等”,说明“两直线平行,同旁内角互补”成立的理由,并与学生交流。例题1:如图,adbc,a=c试说明abdc a d e解:因为adbc 所以c=cde 又因为a=c f b c 所以a=cde 根据“同位角相等,两直线平行:, 可以知道abdc练习:第14页练一练第1、2题小结: 内错角相等平行 同位角相等 同旁内角互补教学素材:a组题:(1)在图中ab,计算1的度数分别为 , , 。(2)如图若abef,bcde,则e+b= a 36 a fb 1 1 1 b c 120 d eb组题:(1) 已知,如图,ab,cd, a b1=48,求2,3, 1 44的度数。 2 3(2)如图,已知abcd,b=120,d=130,求bde的度数。a b f 1 e 2 c d (2)学生回答由学生自己先做(或互相讨论),然后回答,若有答不全的,教师(或其他学生)补充学生板演作业第14页第1、2、3、4、题(5选做)板 书 设 计复习 例1 板演 例2 教 学 后 记课 题第7章 平面图形的认识(二)课时分配本课(章节)需 2 课时本 节 课 为 第 1 课时为 本 学期总第 课时7.3图形的平移(1)教学目标1 知道平移的概念及平移的不变性2 能够根据题目要求做出已知图形的平移后图形重 点能够根据题目要求做出已知图形的平移后图形难 点能够根据题目要求做出已知图形的平移后图形教学方法讲练结合、探索交流课型新授课教具投影仪教 师 活 动学 生 活 动一 情境创设1 引导学生回忆在商场内乘做扶手电梯,在元旦晚会上进行击鼓传花游戏的经历,使学生初步感受生活中平移现象的存在2 提问:你能举出生活中类似于此的例子吗?答:可以,如帆船在水中航行,大雁在空中飞行等等二 探索归纳1例1 1)如右所示,将点a向右平移2个单位后,再向上平移1个单位,将此点记为a/2)连结aa/3)将线段aa/向右平移三格,将所得的新线段记为bb/分析:1)在解决此问题时我们先从点a出发,向右数两格,此时所得的交点,即为a向右平移两格后的点。用同样的方法我们可以得到向上平移一格后的新点a/2)略3)平移线段aa/的方法分为三步: 先将a向右平移三格得到b 再将a/向右平移三格得到b/ 连结bb/解:2 p16 做一做1)将abc向右平移6格,即分别将点a、b、c向右平移6格,得点a/、b/、c/,然后依次连结即可2)指导学生自己动手操作p16 做一做中第一题3)定义:在平面内,我们将一个图形沿着某个方向移动一定的距离,这样的图形运动叫做图形的平移注: 在第一题中,我们将abc向右平移6格,这种操作就称为平移abc 平移由两个方面所决定:平移的方向与平移的距离例如在例1中我们平移点a时交代了两点,一个是向右,一个是2个单位长度 某图形平移后所得的图形称为此图形的对应图形如例1中线段bb/就是线段aa/的对应线段而a/b/c/就是abc的对应三角形4)做一做 第二题在教师引导下,学生自己动手度量,归纳得出abc与a/b/c/各个边相等,各个角也相等教师总结归纳:平移不改变图形的大小与形状例如:a/b/c/是由abc平移得到的,而这两个三角形形状大小均一样又如,线段bb/是由线段aa/平移得到的,两条线段长度相等5)练习:p17 做一做/3 p17 议一议 素材a:1 在平面内,将线段ab沿某个方向平移距离为a,那么图形上的每个点都沿此方向移动了 ,平移不改变线段的长度和 的大小2 请画出将方格中的阴影部分向右平移6格再向下平移2格后的图案:1 答案:1 a 形状 2 略(此处可以让学生在教师的引导下做答)作业板 书 设 计例1: 定义:- - 注:- - -教 学 后 记课 题七、平面图形的认识(二)课时分配本课(章节)需 2课时本 节 课 为 第 2 课时为 本 学期总第 课时7.3图形的平移(2)教学目标1理解平移图形中对应点平行且相等性质2知道平行线间的距离的定义及两平行线间的距离均相等重 点平移图形中对应点平行且相等难 点平移图形中对应点平行且相等教学方法动手操作,合作探究课型新授课教具投影仪教 师 活 动学 生 活 动一 情境创设:1 p19/做一做通过昨天的学习我们知道线段a/b/称为线段ab的对应线段线段a/b/称为线段a/b/的对应线段昨天我们研究的是对应图形之间的关系,即线段a/b/与其对应线段ab之间的关系,今天我们来研究各对应点连线间的关系,即线段aa/与线段bb/之间的关系二 探索归纳1 分别连结对应点a、a/及b、b/,仔细观察线段aa/与bb/问:线段aa/与bb/之间是什么关系?线段aa/与bb/平行且相等也就是说,线段ab经过平移后,连结两对应点(a、a/与b、b/)的线段平行且相等重复上述过程及语句让学生充分感受与理解平移性质的合理性2 p19/议一议通过平面图形感受平移的性质1)四边形a/b/c/d/是由四边形abcd先向左平移8个单位后,再向上平移1个单位后得到的2)总结:也就是说连结四边形四个对应点的线段互相平行且相等3)线段aa/与mm/、平行且相等问:线段mm/与bb/、cc/、dd/、之间有什么关系答:平行且相等3 性质1:图形经过平移后,连结各组对应点的线段平行且相等4 在图820中让学生将ab向右平移2格得a/、b/,连结aa/,bb/,此时aa/,bb/在同一直线上因此性质1应该这样补充:图形经过平移后,连结各组对应点的线段平行(或在同一直线上),并且相等三 平行线间的距离1 在黑板上演示p20的操作,并画出直线a,b,引导学生观察直线a,b问:a,b之间有什么关系,为什么?答:平行,因为对应点连线互相平行2 作线段acbc,将c沿bc方向平移bc长得点c/,连结a/c/问:a/c/与b/c/ 什么关系?为什么?答:垂直,两直线平行同位角相等:问:在平移过程中,ac是否始终垂直与直线a,b答:是3 度量线段ac与线段a/c/的长度,你发现线段ac 与线段a/c/在长度上有什么关系?答:相等我们知道点a到直线b的距离就是线段ac的长度,点a/到直线b的距离就是线段a/c/的长度,这两个距离相等,我们将这个距离称为平行线a,b之间的距离即:如果两条直线互相平行,那么其中一条直线上任意两点到另一条直线的距离相等,这个距离称为平行线之间的距离练习:p21/练一练1,2素材:在下列关于图形平移的说法中,错误的是( )a 图形上任意点移动的方向相同b图形上任意点移动的距离相同c图形上任意两点连线大小不变d 图形上可能存在不动点答:d(学生回答,教师做最后总结)让学生充分观察图821,然后自己归纳得出线段aa/、bb/cc/、dd/互相平行且相等(若学生的语言不够规范,教师可进行适当修整)作业p22/2,3板 书 设 计二, 三,- - - - -教 学 后 记课 题七、平面图形的认识(二)课时分配本课(章节)需 2 课时本 节 课 为 第 1 课时为 本 学期总第 课时7.4 认识三角形(1)教学目标1 认识三角形,会用字母表示三角形 2 知道三角形的个组成部分,并会用字母表示 3 了解三角形的分类4 知道三角形的性质重 点认识三角形,会用字母表示三角形;三角形的性质难 点了解三角形的分类教学方法讲练结合、探索交流课型新授课教具投影仪教 师 活 动学 生 活 动一,情境创设1 举出一些生活中常见的某些三角形,如三角板二,探索归纳1三角形的定义:由3条不在同一直线上的线段,首尾依次相接组成的图形称为三角形如右的图形就是一个三角形2 三角形的各组成部分边:组成三角形的三条线段如右所示:线段ab、ac、bc就是三角形的三条边顶点:三角形任意两边的交点如右所示:点a、b、c均为三角形的顶点通常情况下,我们用三角形的三个顶点加以一个“”来表示一个三角形,在表示三角形时,三个字母之间并无顺序关系如上图中,此三角形可以表示为abc,或acb或bac等等内角:三角形两边所夹的角,称为三角形的内角,简称角例如abc中,a,b,c都是三角形的内角边bc称为a所对的边,或顶点a所对的边,因此边bc也可以表示为a那么边ab,ac呢?3 三角形的分类1)按角分2)按边分4 实验室问:是不是任意三条线段都能够组成三角形?答:不是现在我们就来看一看三条线段满足什么条件才能组成一个三角形请学生在课前准备好五条长度分别为3、4、5、6、9的绳子,现任意取出3根细绳首尾相接搭成三角形,并填写25页表格在教师的引导下让学生自己归纳总结,最后教师在此基础上补充完整得到:三角形任意两边之和大于第三边例如在abc中,根据两点之间线段最短,我们有点a到点b,c的距离之和要大于线段bc的长即 ab+acbc素材a:1. 在练习本上画出:(1) 等腰锐角三角形;(2) 等腰直角三角形;(3)等腰钝角三角形.2 下列长度的各组线段能否组成一个三角形?(1) 15cm、10 cm、7 cm;(2)4 cm、5 cm、10 cm;(3)3 cm、8 cm、5 cm;(4)4 cm、5 cm、6 cm.3.画一个三角形,使它的三条边长分别为3 cm、4 cm、6 cm.4 如图,以c为内角的三角形有 和 在这两个三角形中,c的对边分别为 和 素材b:5 等腰三角形的一边长为3,另一边长是5则它的第三边长为 答案:1 略 2 (1)能 (2) 不能 ( 3) 不能 (4)能 3 略 4 abc adc ad ab 5 3或5观察p23的几副图,使学生初步感受三角形的存在作业p28/1,2,3板 书 设 计1三角形的定义:2 三角形的各组成部分 4 实验室3 三角形的分类 教 学 后 记课 题七、平面图形的认识(二)课时分配本课(章节)需 2 课时本 节 课 为 第 2 课时为 本 学期总第 课时 7.4认识三角形(2)教学目标 1 知道三角形高、中线、角平分线的定义2 会做任意三角形高、中线、角平分线重 点会做任意三角形高、中线、角平分线难 点会做任意三角形高、中线、角平分线教学方法讲练结合、探索交流课型新授课教具投影仪教 师 活 动学 生 活 动一 三角形的高1 复习:过点a做bc的垂线,垂足为d2 在黑板上做abc,过点a做对边bc的垂线,垂足为d,我们就将线段ad称为abc的高3 高的定义:在三角形中,从一个顶点向它的对边所在的直线做垂线,顶点与垂足之间的线段称为三角形的高例如在上图中,我们从abc的一个顶点出发,向它对边bc所在的直线作垂线,垂足为d,线段ad就是三角形的高注:1)三角形的高必为线段 2)三角形的高必过顶点垂直于对边 3)三角形有三条高为了将这三条高加以区别,我们把ad称为bc边上的高例:做出下列三角形的三条高1 锐角三角形:可由教师先做示范,然后再让学生自行画出其余两个2 直角三角形由于c等于900,说明acbc ,那么bc边上的高即为ac,ac边上的高即为bc,3 钝角三角形二,三角形的角平分线1引入:一知abc,做a的平分线ad交bc与点e,线段ae就称为abc的角平分线2 定义:在三角形中,一个内角的平分线与它的对边相交,这个角的顶点与交点间的线段称为三角形的角平分线3注:1)三角形的角平分线必为线段,而一个角的角平分线为一条射线 2)三角形的角平分线必过顶点平分三角形的一内角 如上所示,abc的角平分线ae平分a, 即bae=cae=bac 3)三角形有三条角平分线为了将这三条角平分线加以区别,我们把ae称为bacd的角平分线例:做出下列三角形的三条角平分线教师先做示范,然后再让学生自行画出其余两个锐角三角形直角三角形钝角三角形三,中线1 引入:如右所示,取bc的中点f,连结af,那么线段af就称为abc的中线2 定义:在三角形中,连结一个顶点与它对边中点的线段,叫做三角形的中线如上所示,线段af就是abc的中线3 1)三角形的中线必为线段 2)三角形的中线必平分对边 如上所示,线段af是abc的中线 必有:bf=cf=bc 3)三角形有三条中线例:做出下列三角形的三条角平分线教师先做示范,然后再让学生自行画出其余两个锐角三角形直角三角形:钝角三角形素材a:1 在abc中,ad 是角平分线,be是中线,bad=400,则cad= ,若ac=6cm,则ae= 素材b:2 下列说法正确的是( )a 三角形的角平分线、中线、高都在三角形的内部b 直角三角形只有一条高c 三角形的三条至少有一条在三角形内d 钝角三角形的三条高均在三角形外答案:1 400、6 2 c作业板 书 设 计高 角平分线 中线1 1 12 2 23 3 3例 例 教 学 后 记课 题第七章 平面图形的认识(二)课时分配本课(章节)需 3 课时本 节 课 为 第 1 课时为 本 学期总第 课时75 三角形的内角和(1)教学目标1会利用三角形的内角和解决问题(较高要求)2知道三角形的两个锐角的关系3掌握三角形的外角的概念及三角形的外角与不相邻两个内角的关系(以上两条为较低要求)重 点三角形的内角和难 点三角形内角和知识的应用教学方法讲练结合、探索交流课型新授课教具投影仪教 师 活 动学 生 活 动情景设置:回忆小学学过的三角形三个内角的关系以及探讨方法。(三角形内角和为180,拼图法)新课讲解:问题1 除去小学的拼图的方法,你还能想出其它方法说明三角形的内角和是180吗? (1)如图,过点a作直线mnbc,因为mnbc,所以bmab,cnac因为mabbacnac180,所以bbacc180(此处如有条件,可适当的介绍一下辅助线)(2)书p30议一议由图(1)ab,可得12180,若将木条a绕点a转动,使它与b相交于点c,得图(2),因为a和b平行,则1(23)180,acb3,所以1(2acb)180,即abc的内角和为180。例题1:填空在abc中,(1)a = 37 , c= 89, 则 b=_;(2)b = 30 , a = 3c, 则 c =_,a =_。分析:第(1)题较简单,由三角形内角和为180 ,可列式b=180ab18本版0378954;第(2)题可采用方程的思想,设cx,则a3 x,由三角形内角和为180 ,可列方程x3x30180,解得x37.5,则3 x112.5练习:填空在abc中,(1)c = 90 , b = 30 , 则 a =_;(2)a = 100 , b = c , 则 b =_;(3)b = 30 , c = 2a , 则 c =_;(4)a : b : c = 2 : 3 : 4 ,则a =_; b =_;c =_。问题2 上面练一练(1)中的abc的c = 90,这是一个直角三角形,那么a与b有什么关系?其他的直角三角形也是如此吗?结论:直角三角形的两个锐角互余。问题3 书p32试一试 按照书上编排讲解外角:一条边是公共边,另外一条边是延长线。结论:三角形的一个外角等于和它不相邻的两个内角的和。练习:书p32练一练1. 2. 问题4 书p31例题练习:书p32练一练3小结:1三角形内角和2直角三角形的两个锐角互余3三角形的外角4综合应用教学素材:a组题:1abc中,若a30,bc,则b_c_。2abc中,b42,c52,ad平分bac,则dac_。3abc中,c90,cdab,b56,则dca_。4在abc中,a70,b58,cd是abc的角平分线,则bdc的度数为 度。b组题:1在abc中,三个内角的度数比为234;则相应的外角度数的比是 。2已知:在abc中,cabc2a,bd是ac边上的高(如图),求dbc的度数。学生回答由学生自己先做(或互相讨论),然后回答,若有答不全的,教师(或其他学生)补充由学生自己先做(或互相讨论),然后回答,若有答不全的,教师(或其他学生)补充学生板演由学生自己先做(或互相讨论),然后回答,若有答不全的,教师(或其他学生)补充作业p37 1.2.3.4.板 书 设 计85 三角形的内角和问题一 问题三问题二 问题四教 学 后 记课 题第七章 平面图形的认识(二)课时分配本课(章节)需 3 课时本 节 课 为 第 2 课时为 本 学期总第 课时75 三角形的内角和(2)教学目标1理解多边形内角和的各种推导方法(较高要求)2掌握求多边形内角和的公式(较低要求)重 点多边形内角和公式难 点多边形内角和公式的推导教学方法讲练结合、探索交流课型新授课教具投影仪教 师 活 动学 生 活 动情景设置:1上节课所学知识2书p37 5新课讲解:问题1计算长方形的内角和,梯形的呢?平行四边形的呢?方法是什么?如图,画一条对角线,将四边形分为两个三角形,由三角形内角和是180,可得四边形内角和为2180360 问题2能否通过此方法计算五边形、六边形、七边形、n边形的内角和呢?试完成书p34表格,你得出了什么?结论:n边形的内角和等于(n-2)180问题3 除此之外,你还有其它的方法来探求多边形的内角和吗?按照书p34“想一想”中的两种分法,你能得到多边形的内角和公式吗?是怎样得到的呢?试着利用下面的表格从其它的途径来探索多边形的内角和: 按小明的分法,n边形就可以分得n个三角形,这n个三角形的内角和为n180,但是中间的一个周角是多算的,应该减掉,所以n边形的内角和等于n180360,即(n-2)180 多边形的边数3456n分成的三角形的个数3456n多边形的内角和180360540720(n-2)180 按小丽的分法n边形就可以分得(n1)个三角形,这(n1)个三角形的内角和为(n1)180,但是有一个平角是多算的,应该减掉,所以n边形的内角和等于(n1)180180,即(n-2)180多边形的边数3456n分成的三角形的个数2345n1多边形的内角和180360540720(n-2)180例1 求八边形的内角和。解:(n-2)180(82)1801080例2 (1)一个多边形的内角和是是2340,求它的边数;(2)一个正多边形的一个内角是150,你知道它是几边形吗?解:(1)设多边形边数为n,则有(n-2)1802340,解得n15;(2)因为正多边形各个内角都相等,设这个多边形为n边形,则有(n-2)180150n,解得n12,即此多边形为12边形练习:书p34 .2.3.小结:1多边形内角和公式2探求多边形内角和公式的方法(三种)教学素材:a组题:1一个多边形的每一个外角都等于144,求它的边数。2如果四边形有一个角是直角,另外三个角的度数比是2:3:4,那么这三个内角的度数分别是多少?3已知九边形中,除了一个内角外,其余各内角之和是1205,求该内角。b组题:1一个正多边形的每个内角比相邻的外角大36,求这个正多边形的边数。2多边形的内角和可能是( )a810 b540 c180 d605学生回答由学生自己先做(或互相讨论),然后回答,若有答不全的,教师(或其他
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 交社保劳动合同
- 公司劳务工合同
- 教育科普展馆合同
- 山东省下学期六年级数学期中总结性测试试卷
- 游乐场经营合同
- 部编版二年级语文上册第二单元语文要素落实评价卷
- 海门厂房租赁合同
- 宁夏回族自治区小学三年级上学期数学期中考试试题
- 新班主任安全教育课件
- DB34-T 5280-2025 工业化桥梁三维激光扫描测量技术规程
- 美团食品安全培训课件
- 施工安全技术操作规程(房建)
- 供水管道土方开挖与回填方案
- 糖尿病合并酮症酸中毒护理查房
- 滑膜细胞外基质构建-洞察及研究
- 新版2026统编版小学道德与法治三年级上册 第3课《 学习有方法》第2课时 我和时间交朋友 教案设计(教案)
- 事业单位聘用合同范本及签订规范
- 持续葡萄糖监测临床应用专家共识2024解读
- 2025至2030年中国少儿书法美术培训行业发展趋势预测及投资战略咨询报告
- 国家电投集团国际能源有限公司招聘笔试题库2025
- 认知域作战基础知识课件
评论
0/150
提交评论