高考数学大一轮复习 第九章 平面解析几何 9.9 圆锥曲线的综合问题 第3课时 定点、定值、探索性问题课件 理 新人教版.ppt_第1页
高考数学大一轮复习 第九章 平面解析几何 9.9 圆锥曲线的综合问题 第3课时 定点、定值、探索性问题课件 理 新人教版.ppt_第2页
高考数学大一轮复习 第九章 平面解析几何 9.9 圆锥曲线的综合问题 第3课时 定点、定值、探索性问题课件 理 新人教版.ppt_第3页
高考数学大一轮复习 第九章 平面解析几何 9.9 圆锥曲线的综合问题 第3课时 定点、定值、探索性问题课件 理 新人教版.ppt_第4页
高考数学大一轮复习 第九章 平面解析几何 9.9 圆锥曲线的综合问题 第3课时 定点、定值、探索性问题课件 理 新人教版.ppt_第5页
已阅读5页,还剩62页未读 继续免费阅读

付费下载

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

9 9圆锥曲线的综合问题 第3课时定点 定值 探索性问题 课时作业 题型分类深度剖析 内容索引 题型分类深度剖析 题型一定点问题 例1 2017 长沙联考 已知椭圆 1 a 0 b 0 过点 0 1 其长轴 焦距和短轴的长的平方依次成等差数列 直线l与x轴正半轴和y轴分别交于点q p 与椭圆分别交于点m n 各点均不重合且满足 1 求椭圆的标准方程 解答 设椭圆的焦距为2c 由题意知b 1 且 2a 2 2b 2 2 2c 2 又a2 b2 c2 a2 3 2 若 1 2 3 试证明 直线l过定点并求此定点 证明 几何画板展示 由题意设p 0 m q x0 0 m x1 y1 n x2 y2 设l方程为x t y m y1 m y1 1 由题意y1 0 1 2 3 y1y2 m y1 y2 0 由题意知 4m2t4 4 t2 3 t2m2 3 0 代入 得t2m2 3 2m2t2 0 mt 2 1 由题意mt 0 mt 1 满足 得直线l方程为x ty 1 过定点 1 0 即q为定点 思维升华 圆锥曲线中定点问题的两种解法 1 引进参数法 引进动点的坐标或动线中系数为参数表示变化量 再研究变化的量与参数何时没有关系 找到定点 2 特殊到一般法 根据动点或动线的特殊情况探索出定点 再证明该定点与变量无关 跟踪训练1 2016 河北衡水中学调研 如图 已知椭圆c的中心在原点 焦点在x轴上 离心率e f是右焦点 a是右顶点 b是椭圆上一点 bf x轴 bf 解答 1 求椭圆c的方程 2 设直线l x ty 是椭圆c的一条切线 点m y1 点n y2 是切线l上两个点 证明 当t 变化时 以mn为直径的圆过x轴上的定点 并求出定点坐标 解答 几何画板展示 因为l为切线 所以 2t 2 4 t2 2 2 2 0 即t2 2 2 0 设圆与x轴的交点为t x0 0 因为mn为圆的直径 当t 0时 不符合题意 故t 0 所以t为定点 故动圆过x轴上的定点 1 0 与 1 0 即椭圆的两个焦点 题型二定值问题 例2 2016 广西柳州铁路一中月考 如图 椭圆有两顶点a 1 0 b 1 0 过其焦点f 0 1 的直线l与椭圆交于c d两点 并与x轴交于点p 直线ac与直线bd交于点q 解答 椭圆的焦点在y轴上 当直线l的斜率存在时 设直线l的方程为y kx 1 c x1 y1 d x2 y2 证明 当直线l的斜率不存在时 与题意不符 当直线l的斜率存在时 设直线l的方程为y kx 1 k 0 k 1 c x1 y1 d x2 y2 将两直线方程联立 消去y y1y2 k2x1x2 k x1 x2 1 故点q的坐标为 k y0 思维升华 圆锥曲线中的定值问题的常见类型及解题策略 1 求代数式为定值 依题意设条件 得出与代数式参数有关的等式 代入代数式 化简即可得出定值 2 求点到直线的距离为定值 利用点到直线的距离公式得出距离的解析式 再利用题设条件化简 变形求得 3 求某线段长度为定值 利用长度公式求得解析式 再依据条件对解析式进行化简 变形即可求得 跟踪训练2 2016 珠海模拟 如图 在平面直角坐标系xoy中 点f 0 直线l x 点p在直线l上移动 r是线段pf与y轴的交点 rq fp pq l 解答 1 求动点q的轨迹c的方程 依题意知 点r是线段fp的中点 且rq fp rq是线段fp的垂直平分线 点q在线段fp的垂直平分线上 pq qf 又 pq 是点q到直线l的距离 故动点q的轨迹是以f为焦点 l为准线的抛物线 其方程为y2 2x x 0 几何画板展示 2 设圆m过a 1 0 且圆心m在曲线c上 ts是圆m在y轴上截得的弦 当m运动时 弦长 ts 是否为定值 请说明理由 解答 弦长 ts 为定值 理由如下 取曲线c上点m x0 y0 m到y轴的距离为d x0 x0 圆的半径r 几何画板展示 题型三探索性问题 例3 2015 四川 如图 椭圆e 1 a b 0 的离心率是 过点p 0 1 的动直线l与椭圆相交于a b两点 当直线l平行于x轴时 直线l被椭圆e截得的线段长为 解答 1 求椭圆e的方程 2 在平面直角坐标系xoy中 是否存在与点p不同的定点q 使得恒成立 若存在 求出点q的坐标 若不存在 请说明理由 解答 几何画板展示 当直线l与x轴平行时 设直线l与椭圆相交于c d两点 如果存在定点q满足条件 则有 即 qc qd 所以q点在y轴上 可设q点的坐标为 0 y0 当直线l与x轴垂直时 设直线l与椭圆相交于m n两点 则m 解得y0 1或y0 2 所以 若存在不同于点p的定点q满足条件 则q点坐标只可能为 0 2 当直线l的斜率不存在时 由上可知 结论成立 当直线l的斜率存在时 可设直线l的方程为y kx 1 a b的坐标分别为 x1 y1 x2 y2 其判别式 4k 2 8 2k2 1 0 易知 点b关于y轴对称的点b 的坐标为 x2 y2 所以kqa kqb 即q a b 三点共线 思维升华 解决探索性问题的注意事项探索性问题 先假设存在 推证满足条件的结论 若结论正确则存在 若结论不正确则不存在 1 当条件和结论不唯一时要分类讨论 2 当给出结论而要推导出存在的条件时 先假设成立 再推出条件 3 当条件和结论都不知 按常规方法解题很难时 要开放思维 采取另外合适的方法 解答 跟踪训练3 2015 湖北 一种作图工具如图1所示 o是滑槽ab的中点 短杆on可绕o转动 长杆mn通过n处铰链与on连接 mn上的栓子d可沿滑槽ab滑动 且dn on 1 mn 3 当栓子d在滑槽ab内作往复运动时 带动n绕o转动一周 d不动时 n也不动 m处的笔尖画出的曲线记为c 以o为原点 ab所在的直线为x轴建立如图2所示的平面直角坐标系 1 求曲线c的方程 几何画板展示 由于当点d不动时 点n也不动 所以t不恒等于0 解答 2 设动直线l与两定直线l1 x 2y 0和l2 x 2y 0分别交于p q两点 若直线l总与曲线c有且只有一个公共点 试探究 opq的面积是否存在最小值 若存在 求出该最小值 若不存在 说明理由 几何画板展示 当直线l的斜率存在时 可得 1 4k2 x2 8kmx 4m2 16 0 因为直线l总与椭圆c有且只有一个公共点 所以 64k2m2 4 1 4k2 4m2 16 0 即m2 16k2 4 1 当且仅当k 0时取等号 所以当k 0时 s opq的最小值为8 综合 可知 当直线l与椭圆c在四个顶点处相切时 opq的面积取得最小值8 典例 12分 椭圆c 1 a b 0 的左 右焦点分别是f1 f2 离心率为 过f1且垂直于x轴的直线被椭圆c截得的线段长为1 1 求椭圆c的方程 2 点p是椭圆c上除长轴端点外的任一点 连接pf1 pf2 设 f1pf2的角平分线pm交c的长轴于点m m 0 求m的取值范围 3 在 2 的条件下 过点p作斜率为k的直线l 使得l与椭圆c有且只有一个公共点 设直线pf1 pf2的斜率分别为k1 k2 若k2 0 证明为定值 并求出这个定值 设而不求 整体代换 思想与方法系列23 规范解答 思想方法指导 几何画板展示 对题目涉及的变量巧妙地引进参数 如设动点坐标 动直线方程等 利用题目的条件和圆锥曲线方程组成二元二次方程组 再化为一元二次方程 从而利用根与系数的关系进行整体代换 达到 设而不求 减少计算 的效果 直接得定值 返回 解 1 由于c2 a2 b2 将x c代入椭圆方程 1 得y 2 设p x0 y0 y0 0 所以直线pf1 pf2的方程分别为 3 设p x0 y0 y0 0 则直线l的方程为y y0 k x x0 返回 课时作业 1 2 3 4 1 求椭圆c的标准方程 解答 得a2 4 b2 2 2 如图 椭圆左顶点为a 过原点o的直线 与坐标轴不重合 与椭圆c交于p q两点 直线pa qa分别与y轴交于m n两点 试问以mn为直径的圆是否经过定点 与直线pq的斜率无关 请证明你的结论 解答 1 2 3 4 证明如下 设p x0 y0 则q x0 y0 1 2 3 4 1 2 3 4 2 2016 安徽芜湖 马鞍山第一次质量检测 椭圆e 1 a b 0 的离心率为 点 为椭圆上的一点 1 求椭圆e的标准方程 解答 由 解得a2 6 b2 4 1 2 3 4 2 若斜率为k的直线l过点a 0 1 且与椭圆e交于c d两点 b为椭圆e的下顶点 求证 对于任意的k 直线bc bd的斜率之积为定值 证明 1 2 3 4 设直线l y kx 1 得 3k2 2 x2 6kx 9 0 设c x1 y1 d x2 y2 则 易知b 0 2 1 2 3 4 所以对于任意的k 直线bc bd的斜率之积为定值 1 2 3 4 3 如图 椭圆长轴的端点为a b o为椭圆的中心 f为椭圆的右焦点 且 1 1 解答 1 求椭圆的标准方程 a2 c2 1 a2 2 b2 1 1 2 3 4 2 记椭圆的上顶点为m 直线l交椭圆于p q两点 问 是否存在直线l 使点f恰为 pqm的垂心 若存在 求直线l的方程 若不存在 请说明理由 解答 1 2 3 4 假设存在直线l交椭圆于p q两点 且f恰为 pqm的垂心 设p x1 y1 q x2 y2 m 0 1 f 1 0 直线l的斜率k 1 于是设直线l为y x m 得3x2 4mx 2m2 2 0 1 2 3 4 又yi xi m i 1 2 x1 x2 1 x2 m x1 m 1 0 即2x1x2 x1 x2 m 1 m2 m 0 1 2 3 4 故存在直线l 使点f恰为 pqm的垂心 直线l的方程为3x 3y 4 0 1 2 3 4 4 2016 江西三校第一次联考 已知半椭圆 1 x 0 与半椭圆 1 xb c 0 如图 设点f0 f1 f2是相应椭圆的焦点 a1 a2和b1 b2是 果圆 与x y轴的交点 1 若三角形f0f1f2是边长为1的等边三角形 求 果圆 的方程 1 2 3 4 解答 1 2 3 4 解答 由题意 得a

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论