机器人概述结课论文(规范格式).doc_第1页
机器人概述结课论文(规范格式).doc_第2页
机器人概述结课论文(规范格式).doc_第3页
机器人概述结课论文(规范格式).doc_第4页
机器人概述结课论文(规范格式).doc_第5页
已阅读5页,还剩3页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

机器人概述结课论文题目名称:基于双计算机的仿人机器人的视觉跟踪系统学院名称:信息科学与技术学院专业班级:计算机科学与技术08级(1)班学生姓名:应牡丹学生学号:2008082239完成日期:2010-05-07基于双计算机的仿人机器人的视觉跟踪系统A Visual Tracking Sys tem of a Humanoid Robot Based on two Computers摘要:运动目标的实时跟踪是机器人视觉的关键技术之一。设计了仿人机器人的视觉跟踪系统, 系统采用双计算机, 分别负责视觉信息的处理和运动单元的控制, 两台计算机通过 Memolink 进行通讯。基于 Windows 的视觉信息处理子系统实现运动目标的分割, 状态估计和预测。 运动控制子系统采用 RTlinux 实时操作系统, 利用 PD 控制器控制关节运动。 实验验证了系统的稳定性和实时性。关键词:仿人机器人; 视觉跟踪; RTlinuxAbstr act:The tracking of a moving object is one of the most important technologies in robot vision domain. The visual tracking sys-tem of a humanoid robot is designed. Two computers are embedded in the robot in order to ensure real time tracking of a moving object. Computers are linked with each other through Memolink communication module. One computer is responsible for segmenting the moving object from the video rapidly, estimating and predicting the states of the object. The other is used for the motion control of the robot. The information processing sub- system uses Windows as OS. Motion control sub- system adopts RTLinux as the platform and the conventional PD controller is used to control joints motion. Experiments show the effectiveness and robustness of the system. Key words:Humanoid robot , Visual Tr acking, RTLinux引言:仿人机器人的头部视觉跟踪系统利用视觉信息作为反馈,来规划机器人的头部运动使其能实时的跟踪运动目标。视觉跟踪是仿人机器人的重要功能之一, 它的研究对于仿人机器人的自主导航、 人机交互以及视觉伺服都具有极其重要的意义。视觉跟踪的实时性是仿人机器人的重要性能要求之一。针对这一系统要求, 近年来有很多学者设计出了多种系统结构。文中作者设计了一种基于 CAN总线的分布式的仿人机器人的控制系统, 其中的视觉系统通过无线局域网与控制系统进行通讯。 日本仿人机器人 ASIMO的运动控制系统采用集中式控制方式, 视觉系统通过网络与运动控制系统通讯。一台计算机难以满足视觉跟踪的实时性要求, 为了实现实时跟踪, 本文提出并实现了一种基于 MemoLink 通讯的双计算机的视觉跟踪系统。该系统通讯可靠、 体积小, 便于将两台计算机安置于仿人机器人的胸腔内。目标分割的稳定性是机器人视觉跟踪系统的重要要求之一, 近几年来很多学者对这个领域进行了研究, 大多数的机器人目标跟踪系统选用了单一的图像信息, 有的采用了物体的颜色信息, 有的采用了物体的轮廓信息。然而在复杂的非结构化的室内背景下, 单一的图像信息不能保证系统稳定的分割出目标。多种图像信息的融合是解决目标物体识别稳定性的方法之一。本文中作者提出了一种集成深度、 颜色和形状信息的逐步逼近目标区域的快速目标分割方法。1 系统结构仿人机器人 BHR1 的系统结构如图1所示, 其全身有32个自由度, 其中头部有2个自由度, 可以在两个方向上自由转动,即左右转动和上下转动。 面部放置两只 CCD摄像头作为视觉传感器来模拟人的眼睛。采用 SVS立体视觉处理系统处理视觉信息, SVS系统提供了每帧图像的深度图像。图 1 仿人型机器人(BHR1)跟踪系统的系统结构两台计算机置于机器人的胸腔内, 其中一台计算机负责视觉信息的处理, 另外一台负责机器人的运动控制。前者被称之为信息处理子系统, 后者被称为运动控制子系统, 两台计算机通过 Memolink 进行通讯。 信息处理子系统利用 Windows 强大的多媒体功能来处理立体视觉信息, 实现目标的快速分割以及物体的运动估计和预测。运动控制子系统以 Linux/RT- Linux实时操作系统作为平台, 保证了机器人控制系统的实时性。 除了头部运动关节, 运动控制系统负责仿人机器人全部关节的控制。Mem-olink 是系统间进行快速通信的一种有效解决方案, 是连接信息处理子系统和运动控制子系统的桥梁。具有通信速度快和通信前无需握手的优点。整个跟踪过程执行如下的循环: 搜索目标 发现目标 匹配 状态估计和预测 运动控制。不同的匹配方法应用产生了不同的跟踪方法。本文中作者提出了一种融合深度、颜色和形状信息的逐步逼近目标区域的快速分割方法。在实时的跟踪系统中, 运动估计和预测有效的减少了检测区域, 提高了系统的跟踪速度。研究中采用经典的卡尔曼滤波器进行运动目标的状态估计和预测。2 基于多图像信息的目标分割方法视觉信息处理子系统完成目标物体的快速分割, 同时估计和预测目标物体的运动信息, 把目标物体的位置信息实时地传递给运动控制子系统。目标识别的稳定性对整个跟踪系统的稳定性起着至关重要的作用。在复杂背景的非结构化的室内环境下, 用于机器人视觉跟踪的图像信息有:深度、 颜色、 形状、 边缘、 运动等。基于多信息的运动目标的分割方法中, 所选取的信息应该具有互补性。物体的颜色是物体最显著的特征, 适合用于目标的跟踪。但是当背景中包含同样颜色的物体时, 基于颜色的跟踪将会失败。深度信息有助于系统得到粗略的前景区域, 也就是包含运动物体的目标候选窗口, 另外基于深度分割的粗略前景轮廓的获得计算量小, 速度快。基于 RHT( Random Hough transform)算法的形状检测器可以检测各种不同的几何形状,比如:椭圆形、 三角形和多边形, 进而把目标候选区域中相同颜色的物体区别开来。图 2 视频序列中运动目标分割过程图 3 复杂场景中目标物体的分割结果本文利用仿人机器人的立体视觉系统, 设计了融合深度, 颜色, 形状信息的逐步逼近目标区域的快速跟踪方法。图 2 为视频序列中运动目标的分割过程。首先利用深度信息把机器人关心的前景区域分割出来, 得到 ROF( Region of Foregroud)区域,即粗略的目标候选区域。在 ROF 中使用颜色滤波器分割, 得到ROIC( Region of Interest Color)区域。最后形状检测器可以把相同颜色的物体区别开来。在分割过程中, 候选目标区域逐步缩小并逼近目标区域。 逐步缩小的候选目标区域减少了计算量, 提高了系统的运算速度。 同时, 该方法有效的避免了场景中相同颜色物体的干扰, 提高了目标分割的稳定性。 图 3 显示了目标物体的分割结果。3 运动控制子系统3.1 运动控制系统的结构机器人的运动控制子系统是一个典型的计算机控制系统。机器人头部的控制目的是为了机器人的头部能够实时跟踪运动目标, 因此实际控制信号输入量是根据目标物体的位置信息求得的规划数据。 在反馈信号的输入方面, 因为被控对象是电机转动的角度, 用电机上面的轴角编码器的输出作为反馈信号。系统使用了一套多功能接口板, 将所有的 A/D 转换、 D/A 转换、 ENC ( encoder)、 PWM、 IO 等多种功能都集成在该接口板上,提高了系统的集成性并减小了系统体积和重量。 多功能接口板上上的 ENC 接口来作为反馈信号的输入通道, 它可以测量轴角编码器的脉冲输出个数。每个运动关节采用经典的 PD 伺服控制。3.2 运动控制系统的软件结构运动控制子系统采用了 RT-Linux( Real Time Linux)实时操作系统, 其软件结构如图 4 所示, 主要包括两个模块:主程序模块、 实时任务模块, 主程序模块是 linux 应用程序, 实时任务模块是 RTLinux 下的实时进程。两个模块也是两个进程, 通过管道( FIFO)进行通讯等。图 4 BHR1 运动控制系统的软件结构实时任务主模块包括两部分: 周期性执行的实时控制循环(即实时线程)和实时任务触发器。实时线程的周期性执行是由一个循环实现的。该循环主要完成两大功能:机器人运动控制、与各电机相连的轴角编码器的信息采集。实时任务周期为 3 毫秒。实时任务周期是根据 D/A 通道处理时间和码盘计数器读取时间, 以及传感器信息获取时间确定。主程序模块与一般的 Linux 应用程序没有区别, 它主要有以下几个功能:与信息处理系统通讯; 向实时任务传送控制参数;实现人机交互, 即将从实时任务传过来的电机转动数据和传感器数据输出到监视器上, 同时将通过键盘输入的控制信号, 实际上主程序模块主要实现控制台的作用, 可以称之为控制台程序。3.3 运动控制过程跟踪系统的控制目标是: 根据图像处理获取的目标质心在图像平面中的位置, 实时调整机器人头部的 2 个电机转动角度,将目标置于图像平面的中央位置。运动控制系统中一个控制循环大约需要 3 毫秒的时间。 在信息处理系统中, 处理一帧图像平均需要 100 毫秒左右的时间。 由此可见, 视觉处理的周期要远远大于运动控制的周期。 因此在一个视觉处理周期之后, 系统应该做好下一个视觉处理周期之内的运动规划, 也就是做好后面多个控制周期之内的运动规划, 这样才能保证机器人的头部以均匀、 平缓, 同时又是准确的速度来跟踪目标。4 实验在仿人机器人 BHR1 中, 信息处理计算机的 CPU 为 P2.4GHz, 内 存 为 512MB, 运 动 控 制 计 算 机 的 CPU 为 PII-I700MHz,内存为 256MB。 SVS 系统的采集速度为 15 帧每秒, 采集图像的大小为 320240 像素。 Memolink 采用 PCI 接口, 最大传输速率为 1M bytes/s 或 1M words/s。4.1 复杂背景下运动目标的跟踪。在运动物体跟踪实验中, 红色小球作为目标在机器人的视野中做单摆运动。为了验证基于多图像信息的目标识别算法,背景中放置了红色的方块和一个绿色的小球。实验结果如图 5所示, 第一行图像是实验场景, 第二行图像是左摄像头的视频序列, 结果表明彩色目标运动速度小于 0.3m/s 时, 机器人头部仍可以很好地跟踪目标的运动, 并使其始终位于左侧摄像机所采集到图像的中央位置。在复杂的非结构环境的室内背景下, 利用单一的图像信息, 系统很可能会跟踪失败。相同背景下, 单一的颜色信息不能将红色的小球和背景中的红色方块区分开来。图 5 复杂背景下彩色目标跟踪实验图 6 目标在 X、 Y方向上的跟踪误差(像素)图 6 显示了红色小球运动状态时的跟踪过程, 图中的数据为实际数据的 1/10 抽样。可以看出, 在 X 轴方向上, 目标质心坐标到图像中心的偏差在30 个像素以内, 在 y 轴方向上, 目标质心坐标到图像中心的偏差在20 个像素内。实验说明在物体的运动过程中, 跟踪系统能够实时跟踪物体并将物体的质心保持在左眼摄像机的中心。5 结论本文提出了基于Memolink通讯的双计算机的仿人机器人的视觉跟踪系统,系统能够满足仿人机器人实时视觉跟踪的性能要求。在未知的复杂环境中, 基于深度、 颜色和模版匹配的多图像信息融合方案确保机器人稳定的从视频序列中分割出运动目标。本文作者的创新点:本文提出并实现了一种基于 MemoLink 通讯的双计算机的视觉跟踪系统, 一台计算机负责视频信息的处理, 另一台计算机负责机器人头部的运动控制, 实现了仿人机器人头部对运动目标的实时跟踪。 本文提出了一种集成深度、 颜色和形状信息的逐步逼近目标区域的快速目标分割方法, 实现了复杂背景下目标物体的稳定分割。参考文献1S.Yoshiaki, W.Ryujn, A.Chiaki, The intelligent ASIMO: system overview and integration A, IEEE/RJ

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论