




已阅读5页,还剩9页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
简单线性规划 二元一次不等式Ax By C 0在平面直角坐标系中表示直线Ax By C 0某一侧所有点组成的平面区域 确定步骤 若C 0 则直线定界 原点定域 直线定界 特殊点定域 复习 应该注意的几个问题 1 若不等式中是严格不等号 即不含0 则边界应画成虚线 2 画图时应非常准确 否则将得不到正确结果 3 熟记 直线定界 特殊点定域 方法的内涵 否则 即不等式中是非严格不等号时 应画成实线 y x O 问题1 x有无最大 小 值 问题2 y有无最大 小 值 问题3 z 2x y有无最大 小 值 在不等式组表示的平面区域内 在平面直角坐标系中作出不等式组表示的平面区域 求z 2x y的最大值和最小值 所以z最大值12z最小值为3 这是斜率为 2 纵截距为z的直线 return 解析 问题 设z 2x y 式中变量x y满足下列条件 求z的最大值和最小值 x y O 这是斜率为2 纵截距为 z的直线 解析 return 求z 3x 5y的最大值和最小值 使式中的x y满足以下不等式组 解析 线性目标函数 线性约束条件 线性规划问题 任何一个满足不等式组的 x y 可行解 可行域 所有的 最优解 认识概念 线性规划有关概念 由x y的不等式 或方程 组成的不等式组称为x y的约束条件 关于x y的一次不等式或方程组成的不等式组称为x y的线性约束条件 欲达到最大值或最小值所涉及的变量x y的解析式称为目标函数 关于x y的一次目标函数称为线性目标函数 求线性目标函数在线性约束条件下的最大值或最小值问题称为线性规划问题 满足线性约束条件的解 x y 称为可行解 所有可行解组成的集合称为可行域 使目标函数取得最大值或最小值的可行解称为最优解 2 移 平行移动直线 确定使取得最大值和最小值的点 解线性规划问题的步骤 3 求 通过解方程组求出取得最大值或者最小值的点的坐标及最大值和最小值 4 答 作出答案 1 画 画出线性约束条件所表示的可行域 和直线不全为目标函数为 两个结论 2 求线性目标函数的最优解 要注意分析线性目标函数所表示的几何意义 y前系数为正 y前系数为负 1 线性目标函数的最大 小 值一般在可行域的顶点处取得 也可能在边界处取得 Z增大 显然Z减小 Z减小 显然Z增大 P103练习 3 4 3求 2移 1画 0 x y x y 5 0 x y 0 A x y 5 0 y 0 求z
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 浙江省温州市苍南县龙港市青华学校2024-2025学年七年级下学期6月期末数学试题(含部分答案)
- 广西南宁市部分学校2024-2025学年高一下学期期末教学质量监测 化学试题(含答案)
- 甘肃省百师联盟2024-2025学年高二下学期期末考试数学试题(含部分答案)
- 少先队员演讲稿范文
- 汉字单人旁的演变课件
- 2025协商解除劳动合同书
- 2024年秋新北师大版数学一年级上册教学课件 第二单元 5以内数加与减 第4课时 还剩下多少
- 实验小学交通安全应急预案10篇
- 水表井安全知识培训总结课件
- 建筑施工现场噪音控制方案
- 2025年职工技能大赛考核试题及答案
- 2025年中国邮政集团工作人员招聘考试笔试试题(含答案)
- 规范大件运输管理制度
- 药学处方审核培训
- T-MSC 005-2024 灵芝孢子油生产加工技术规范
- 职业院校班主任辅导员培训
- 贸易意向合作协议书范本
- 校园活动讲安全
- DB37T 5230-2022 岩棉复合板外墙外保温系统应用技术规程
- 外科腹腔镜手术护理
- 浅析立体心何模块在新高考中的命题方向研究课件高三数学一轮复习
评论
0/150
提交评论