




已阅读5页,还剩2页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
抽屉原理教学设计西丰县东方红小学 刘玉华教学内容:人教版义务教育课程标准实验教科书数学六年级(下册)第四单元数学广角“抽屉原理”第70、71页的内容。学情分析:抽屉原理是学生从未接触过的新知识,难以理解抽屉原理的真正含义,发现有相当多的学生他们自己提前先学了,在具体分的过程中,都在运用平均分的方法,也能就一个具体的问题得出结论。但是这些学生中大多数只“知其然,不知其所以然”,为什么平均分能保证“至少”的情况,他们并不理解。有时要找到实际问题与“抽屉原理”之间的联系并不容易,即使找到了,也很难确定用什么作为“抽屉”,要用几个“抽屉”。1年龄特点:六年级学生既好动又内敛,教师一方面要适当引导,引发学生的学习兴趣,使他们的注意力始终集中在课堂上;另一方面要创造条件和机会,让学生发表见解, 发挥学生学习的主体性。2思维特点:知识掌握上,六年级的学生对于总结规律的方法接触比较少,尤其对于“数学证明”。因此,教师要耐心细致的引导,重在让学生经历知识的发生、发展和过程,而不是生搬硬套,只求结论,要让学生不知其然,更要知其所以然。教材分析:“数学广角”是人教版六年级下册第五单元的内容。在数学问题中,有一类与“存在性”有关的问题,如任意367名学生中,一定存在两名学生,他们在同一天过生日。在这类问题中,只需要确定某个物体(或某个人)的存在就可以了,并不需要指出是哪个物体(或哪个人),也不需要说明通过什么方式把这个存在的物体(或人)找出来。这类问题依据的理论,我们称之为“抽屉原理”。本节课教材借助把4枝铅笔放进3个文具盒中的操作情境,介绍了一类较简单的“抽屉原理”,即把m个物体任意分放进n个空抽屉里(mn,n是非0自然数),那么一定有一个抽屉中放进了至少2个物体。关于这类问题,学生在现实生活中已积累了一定的感性经验。教学时可以充分利用学生的生活经验,放手让学生自主思考,先采用自己的方法进行“证明”,然后再进行交流,在交流中引导学生对“枚举法”、“反证法”、“假设法”等方法进行比较,使学生逐步学会运用一般性的数学方法来思考问题,发展学生的抽象思维能力。让学生通过本内容的学习,帮助学生加深理解,学会利用“抽屉问题”解决简单的实际问题。在此过程中,让学生初步经历“数学证明”的过程。实际上,通过“说理”的方式来理解“抽屉原理”的过程就是一种数学证明的雏形,有助于提高学生的逻辑思维能力,为以后学习较严密的数学证明做准备。还要注意培养学生的“模型”思想,这个过程是将具体问题“数学化”的过程,能从纷繁的现实素材中找出最本质的数学模型,是体现学生数学思维和能力的重要方面。教学目标:1知识与能力目标:经历“抽屉原理”的探究过程,初步了解“抽屉原理”,会用“抽屉原理”解决简单的实际问题。通过猜测、验证、观察、分析等数学活动,建立数学模型,发现规律。渗透“建模”思想。2过程与方法目标:经历从具体到抽象的探究过程,提高学生有根据、有条理地进行思考和推理的能力。3情感、态度与价值观目标:通过“抽屉原理”的灵活应用,提高学生解决数学问题的能力和兴趣,感受到数学文化及数学的魅力。教学重点:经历“抽屉原理”的探究过程,初步了解“抽屉原理”。教学难点:理解“抽屉原理”,并对一些简单实际问题加以“模型化”。教学准备:多媒体课件、扑克牌、盒子、铅笔、书、练习纸。教学过程:一、游戏激趣,初步体验。在上课前,我们先热热身,一起玩抢椅子游戏好吗?谁愿意参加?请五位同学到前面来,这有四把椅子,老师说:开始!你们几个都要坐到椅子上。听明白了吗?好开始。告诉老师他们坐下了吗?老师不用看,就知道一定有一把椅子上至少做了两名同学。对吗?假设请这五位同学再反复坐几次,老师还敢肯定地说,不管怎么做,总有一把椅子上至少坐了两个同学,你们相信吗?其实这里面蕴藏着一个非常有趣的数学原理,想不想研究啊?二、先学后教1、出示自学指导:把4枝铅笔放进3个文具盒中,你想怎么放?动手摆一摆,并做好记录。再看记录单说一说,你发现了什么?想好后与同桌交流。时间3分钟2、学生动手操作自学。3学生汇报:一共有四种情况:可能发现一个盒里最多可放4个,也可能发现一个盒里一个也没有。四种情况综合看,最终发现:总有一个文具盒里至少放进2枝铅笔。(让学生反复说几遍)4、教师过渡:通过一一列举,我们发现了“4枝铅笔放进3个文具盒,不管怎么放,总有一个文具盒里至少放进2个铅笔。”这个结论。这是为什么呢?能通过其他方法来证明这个结论吗?小组讨论后汇报。(假设法)5、教师小结:假设每个盒里放一枝,剩下的一枝还要放进一个盒里,无论放在哪个盒里,一定能找到一个盒里至少有2枝铅笔。要想盒里“至少”就必须平均分才能将铅笔尽可能的分散。保证“至少”的情况。6教师继续提问:如果把 6支铅笔放进5个文具盒里呢?还用摆吗?结果是否一样?怎样解释这一现象?(6枝铅笔放在5个盒子里,不管怎么放,总有一个盒子里至少有2枝铅笔。)把7支铅笔放进6个文具盒里呢?把8枝笔放进7个盒子里呢?把9枝笔放进8个盒子里呢? 100支铅笔放进99个文具盒呢?教师引导学生进行比较:你发现什么?(笔的枝数比盒子数多1,不管怎么放,总有一个盒子里至少有2枝铅笔。)师:你的发现和他一样吗?(一样)你们太了不起了!同桌互相说一遍。7出示第70页做一做,让学生运用简单的抽屉原理解决问题。在说理的过程中重点关注“余下的2只鸽子”如何分配?让学生进行自主学习活动(独立思考 自主探究),教师再结合课件进行演示:8深入探究,寻找规律。刚才是铅笔数比文具盒数多1枝的情况少有2只鸽子要飞进同一个鸽舍里”?(从余数1到余数2,让学生再次体会要保证“至少”必须尽量平均分,余下的数也要进行二次平均分。)8发现规律,初步建模。我们将铅笔、鸽子看做物体,盒子、鸽舍看做抽屉,观察物体数和抽屉数,你发现了什么规律?(学生用自己的语言描述,只要大概意思正确即可)小结:只要物体数量比抽屉的数量多,总有一个抽屉至少放进2个物体。这就叫做抽屉原理。9看有关抽屉原理资料,让学生感受古代数学文化。“抽屉原理”又称“鸽巢原理”,最先是由19世纪的德国数学家狄利克雷提出来的,所以又称“狄里克雷原理”,这一原理在解决实际问题中有着广泛的应用。“抽屉原理”的应用是千变万化的,用它可以解决许多有趣的问题,并且常常能得到一些令人惊异的结果。 10、下面我们应用这一原理解决问题。(1)出示71页的例2:把5本书放进2个抽屉中,不管怎么放,总有一个抽屉至少放进几本书?(2)说一说你是怎么做的,怎么想的?(3)如果一共有7本书呢?9本书呢?5221 213(本)7231 314(本)9241 415(本)(4)观察三个算式,你发现什么规律?讨论后得出结论:总有一个抽屉至少放进的本数是“商1”(5)应用这个规律解答8只鸽子飞回3个鸽舍,至少有3只鸽子要飞进同一个鸽舍里。为什么?通过刚才的学习,我们基本掌握了抽屉原理,想不想挑战一下,看看自己是否真的掌握了?三、当堂训练(一)填空1、8根小棒放进3个盒里,不管怎么放,总有一个盒里至少几根?想:这道题中物体数是( ),抽屉数是( ),算式为( )( )( )( ),( )( )( )所以总有一个盒里放( )根。2、我校六年有370名学生,一定有几人的生日是同一天?想:这道题的物体数是( ),抽屉数是( ),算式是( )( )( )( ),( )( )( ),所以一定有( )人的生日是同一天。3我班有学生63人,至少有几人是同一个月出生的?想:这道题中物体数是( ),抽屉数是( ),算式为( )( )( )( ),( )( )( ),所以至少有( )人是同一个月出生的。(二)游戏我这里有一副扑克牌,去掉了两张王牌,还剩52张,我请五位同学每人任意抽1张,听清要求,不要让别人看到你抽的是什么牌。请大家猜测一下,同种花色的至少有几张?为什么?( 2张/因为54=11)教师可以先验证一下学生的猜测:举牌验证。如有3张同花色的,符合你们的猜测吗?如果9个人每一个人抽一张呢?(至少有3张牌是同一花色,因为94=21) (三)张叔叔参加飞镖比赛,投了5镖,成绩是41环。张叔叔至少有一镖不低于9环。为什么?全课小结。说一说:今天这节课,我们又学习了什么新知识?五、课外作业。课本73页练习十二第2、4题六、板书设计数学广角 抽屉原理物体数抽屉数商余数 至少数商 15 2
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025-2030功能性饮用水原料供应链与质量控制报告
- 2025-2030功能型生物肥料在特色作物种植区的推广模式报告
- 2025-2030共享经济行业市场现状供需分析及投资风险评估分析报告
- 2025-2030共享医疗检测设备行业基层医疗机构合作模式分析报告
- 新能源安全管理挑战与机遇:2025年技术创新应用策略报告
- 2025数字孪生在城市历史文化名城保护规划中的文化遗产数字化保护与应用报告
- 2025年航天科技知识考试真题及答案
- 2025年全国学生学宪法讲宪法知识题库附含参考答案
- 2025年职业卫生与职业医学习题和参考答案题库
- 2025年新安全生产法题库(附答案解析)
- 《分子生物学基础知识》课件
- GB/T 45147-2024道路车辆总质量大于3.5 t的车辆气制动系统试验使用滚筒制动试验台获取和使用参考值
- 食管纵隔瘘护理
- 建筑项目水泥采购合同
- 华为ICT大赛网络赛道考试题库(786题)
- 水果采购协议样本
- 中职英语(高教版2021基础模块1)Part01-Unit2-Transportation
- 哲学与人生 第二课 树立科学的世界观2.1
- 2024-2030年中国止痛药品市场供需形势及未来前景动态研究研究报告
- 风电110KV升压站土建工程施工方案
- 2018低压电力线高速载波通信互联互通技术规范第3部分:检验方法
评论
0/150
提交评论