二次函数y=ax +bx+c的图像和性质.doc_第1页
二次函数y=ax +bx+c的图像和性质.doc_第2页
二次函数y=ax +bx+c的图像和性质.doc_第3页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

22.1.4 二次函数y=ax+bx+c的图象和性质(第1课时) 教学目标:1会用配方法求二次函数一般式yax2bxc的顶点坐标、对称轴;2能根据二次函数yax2bxc的顶点坐标和对称轴公式求函数的顶点坐标和对称轴;3会画二次函数一般式yax2bxc的图象知道二次函数 y=ax+bx+c与y=a(x-h)+k的区别和联系教学重点:根据二次函数yax2bxc的顶点坐标和对称轴公式求函数的顶点坐标和对称轴;教学难点:用配方法确定二次函数yax2bxc的对称轴,顶点坐标教学过程1、 创设情境,引入新课1、二次函数图象的开口_,对称轴是_,顶点坐标_,它可由先向_平移_个单位,再向_平移_个单位。 2、我们知道,像y=a(x-h)+k这样的函数,容易确定相应抛物线的顶点为(h,k),二次函数yx26x21也能化成这样的形式吗?能够画出它们的图象吗?2、 学习新课:1、回顾:将下列多项式进行配方(1) (2)(3)2、用配方法将二次函数yx26x21化为y=a(x-h)+k的形式,并画出图象因此,抛物线开口_,对称轴是直线_,顶点坐标是( )由对称性列表:x 3、自学检测: 1. 根据yx26x21 的图象说出函数的变化趋势2.用配方法确定抛物线的开口方向、对称轴和顶点坐标 开口方向_ 对称轴_ 顶点坐标_4、合作探究:你能用配方法求抛物线y=ax+bx+c(a0)的顶点和对称轴吗?yax2bxca(_)c 提取二次项系数ax2_x_c 括号内配成完全平方a(_)()2c a(_)2_.化为y=a(x-h)+k的形式归纳:当a0时,开口向上,当a0时,开口向下,对称轴是_,顶点坐标是(_,_)三、当堂训练1.求下列抛物线的对称轴及顶点坐标(1) y2x28x8 (2) y3x22x;2.已知二次函数y2x28x6,把它化成y=a(x-h)+k的形式,当_时,y随x的增大而增大;当x_时,y有_值是_3. 二次函数y2x2bxc的顶点坐标是(1,2),则b_,c_2OXY4如图,二次函数的大致图象如图所示,则函数的图象不经过( )A第一象限 B第二象限 C第三象限 D第四象限y5.已知抛物线y=ax+bx+c.在平面直角

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论