国内外先进煤气化工艺技术的评述.doc_第1页
国内外先进煤气化工艺技术的评述.doc_第2页
国内外先进煤气化工艺技术的评述.doc_第3页
国内外先进煤气化工艺技术的评述.doc_第4页
国内外先进煤气化工艺技术的评述.doc_第5页
已阅读5页,还剩8页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

国内外先进煤气化工艺技术的评述作者/来源:章荣林(中国天辰工程有限公司,天津300400)日期:2009-04-05我国是一个缺油、少气、煤炭资源相对而言比较丰富的国家,如何利用我国煤炭资源相对比较丰富的优势发展煤化工已成为大家关心的问题。近年来,我国掀起了煤制甲醇热、煤制油热、煤制烯烃热、煤制二甲醚热、煤制天然气热。有煤炭资源的地方都在规划以煤炭为原料的建设项目,这些项目都碰到亟待解决原料选择问题和煤气化制合成气工艺技术方案的选择问题。现就适合于大型煤化工的比较成熟的几种煤加压气化技术作评述,供大家参考。 1 几种煤加压气化工艺技术的现状及优缺点1.1 壳牌(Shell)干煤粉加压气化工艺技术 壳牌干煤粉加压气化工艺技术,属于气流床加压气化技术。可气化褐煤、烟煤、无烟煤、石油焦及高灰熔点的煤。入炉原料煤为经过干燥、磨细后的干煤粉。如需添加助熔剂,原料煤可以与助熔剂在磨煤机中混磨。干燥后的粉煤用氮气气动输送至加料斗中,再用高压氮气输送到气化炉,从气化炉下部的喷嘴进入气化炉。属多烧嘴上行制气。目前国外最大的气化炉日处理煤2000 t,气化压力为3.0 MPa,国外这一套是用于商业化联合循环发电,尚无更高气化压力和用于煤化工生产的业绩。这种气化炉是采用水冷壁,无耐火砖衬里。熔融灰渣沿水冷壁而下,排入炉底水槽。水冷壁内壁涂有一层SiC耐火材料,熔渣在水冷壁上结成固体熔渣层,达到以渣抗渣的目的。为便于检修,水冷壁与气化炉壳体间留有800 mm环隙。环隙间充有250300 的有压合成气。为调节炉温,需向气化炉内输入中压过热蒸汽。采用废热锅炉冷却回收煤气的显热,副产蒸汽。气化温度可以达到14001600 ,气化压力可达3.04.0 MPa,可以气化高灰熔点的煤,但需在原料煤中添加石灰石作助熔剂。该种炉型原设计是用于联合循环发电的,国内从本世纪初至今已签订技术引进合同16套20台气化炉,其最终产品有合成氨、H2、甲醇,气化压力3.04.0 MPa。其特点是干煤粉进料,用高压氮气气动输送入炉,对输煤粉系统的防爆要求严格;气化炉烧嘴为多喷嘴,有4 个对称式布置,调节负荷比较灵活;为了防止高温气体排出时夹带的熔融态和粘结性飞灰在气化炉后的输气导管换热器、废热锅炉管壁粘结,采取将高温除灰后的部分300350 、含尘量2 mg/m3左右的气体与部分水洗后160165 、含尘量1 mg/m3左右的气体混合,混合后的气体温度约200 ,用返回气循环压缩机加压送到气化炉顶部,将气化炉排出的高温合成气激冷至900 后,再进入废热锅炉热量回收系统。返回气的量很大,相当于气化装置产气量的80%85%,因返回气温度高达200 、含尘、CO含量高达65%左右、又含有H2S,对返回气循环压缩机的密封性能和操作条件要求十分苛刻,不但投资高,多耗动力,而且出故障的环节也多;出废热锅炉后的合成气,采用高温中压陶瓷过滤器,在高温下除去夹带的飞灰,陶瓷过滤器不但投资高,而且维修工作量大,每年需要更换一次过热元件,以投煤量1000 t/d的气化装置为例,每年需500万元,维修费用也高。废热锅炉维修工作量也大,故障也多,维修费用也高。据介绍,碳转化率可达98%99%;冷煤气效率高达80%83%;合成气有效气(COH2)含量高达90%左右,有效气(COH2)比煤耗550600 kg/km3,比氧耗330360 m3/km3(用河南新密煤时,比煤耗为709 kg/km3,比氧耗为367.2 m3/km3。所以在这里要说明一点,无论哪一种煤气化技术,资料上介绍的比煤耗和比氧耗都是在特定条件下的数据,某一煤种确切的数据,应该在煤试烧后方能获得,在做方案比较的时候可以用气化工艺计算的方法求得,要用同一个煤种数据作为评价的依据。);比蒸汽耗120150 kg/km3;可副产蒸汽880900 kg/km3。其存在的问题是气化装置的氮气(或CO2)消耗量相当大,还需配套超高压氮压机、高压氮压机、低压氮压机,以及激冷气压缩机,不但投资高,而且能耗也高。生产上,煤的干燥、磨粉增加的动力能耗,输入中压过热蒸汽水蒸汽与煤比为(0.220.25)1,相当于水煤浆中含水20%等所增加的煤耗、动力能耗,相应抵消了干法进料的煤耗和氧耗低的优点。另一点是专利商在国外只有一套用于发电的装置,缺乏用于煤化工生产的业绩。荷兰怒恩电力公司布根努姆电厂的(Demkolec)煤气联合循环发电装置为调峰电厂。据中国氮肥工业协会赴欧洲技术考察报告介绍,该发电装置设计气化炉投煤量为2000 t/d,设计发电能力284 MW,外送电253 MW(外送电应为2216.28 GWh/a),自用电31 MW,全部总投资(按1989年物价指数)为850106荷兰盾,折350106欧元(3.5亿欧元)其中: 气化装置占27% 折94.5106欧元 空分装置占9% 折31.5106欧元 燃气循环(IGCC)占31% 折108.5106欧元 发电机系统占5% 折17.5106欧元 自控系统占10% 折35106欧元 供配电系统占8% 折28106欧元 专利费及界区内设计费占10% 折35106欧元 设计的发电能量利用率为43%44%,折单位发电投资额为1400美元/kW。建设期6年,1993年底建成,19941997年试运转,1998年1月开始进入商业运行。 工厂19942003年主要运行数据见表1、2。 表1 19942003年工厂发电产量统计(外送电量)年份1994199519961997199819992000200120022003电力产量/GWh7507907001060126013901260100012001400煤制气发电10250380840101010908405409001160燃油发电740540320220250300420460300240生产负荷率/%33.8435.6531.5847.8356.8562.7256.8545.1254.1463.17其中煤制气发电生产负荷率/%0.4511.2817.1537.945.5749.1837.924.3740.6152.34表2 19942003年工厂全年实际运行率统计(每年按365天计)年份19941995 199619971998 1999200020012002年运行率/%100100100100100100100100100100煤制气发电/d7.0117182.5277296285245270270270煤发电比例/%2325076817867747474燃油发电天数/d358248182.5886980120959595燃油发电比例/%98685024192233262626 自1999年至2003年的5年商业性运行中,煤制气发电平均年运行时间为268 d(6432 h),占全年运行时间的73.4%。煤制气发电外送电量平均为906 GWh,为设计年外供电量(2216.26 GWh)的40.88%。煤制气实际发电量(包括自用电199.4 GWh)为1105.4 GWh,为设计年实际发电量的44.43%。按年平均运行时间268天计,实际发电量应为1826.7 GWh,设计日投煤量为2000 t,实际平均日投煤量为1210 t,生产负荷率只有60.5%。 从以上分析看,这套煤制气发电装置平均年运行时间为268 d(6432 h),与水煤浆气化装置的气化炉平均年运行时间(每台270300 d/a)相仿,但是生产负荷率只有60.5%,长期是低负荷,低运行率。专利商明明知道这套示范发电装置长期低负荷、低运行率的实际情况,还推荐在中国建的煤化工生产装置,只建一台气化炉系统,不设备用炉,是有其难言的苦衷的。因为该煤气化系统设备庞大、结构复杂、维修困难、系统控制要求高、投资高、建设周期长,建备用气化炉系统,显然投资太大、无竞争力。但是煤化工生产要求全装置常年连续稳定高效生产,远比一座调峰电厂的生产要求严,调峰电厂除煤制气发电系统外,还另有燃油或天然气发电系统可作为备用。而我国引进的Shell煤气化装置只设一台气化炉,单系列生产,没有备用炉,在煤化工生产中能否常年连续稳定生产是没有保证的。煤化工生产系统若因此而经常开开停停,工厂年运行率低、生产负荷低,工厂的经济损失将是很大的。一套不设备用炉的装置投资相当于设备用炉的GEGP德士古气化装置或多喷嘴水煤浆气化装置投资的22.5倍,排出气化炉的高温煤气用庞大的、投资高的废热回收锅炉回收显热副产蒸汽后,如用于煤化工,尚需将蒸汽返回后续一氧化碳变换系统,如用于制合成氨和氢气,副产的蒸汽量还不够用。同时另外还需要另设中压过热蒸汽系统,供应气化所需的过热蒸汽。本人认为目前Shell带废热锅炉的干粉煤加压气化技术并不适用于煤化工生产的,有待改进。所以业主和工程公司在做煤气化方案选择时,不能只听专利商的一面之词,被专利商牵着鼻子走,要将工程项目的全流程做技术经济评价,要把空分系统的投资和电耗差别,磨煤系统的电耗差别,原料煤干燥系统的煤耗差别,输煤系统的电耗差别,备煤及输煤系统的投资差别,输入气化炉的过热蒸汽的煤耗及投资差别,一氧化碳变换工序投资及能耗差别等都考虑进去,才能得出正确的结论。 我国采用Shell干煤粉加压气化工艺的装置自2006年开始,陆续投料试生产的,已有好几家,但是至今尚无一家达到长周期稳定满负荷正常生产。主要的原因是系统流程长,设备结构复杂。无论是采用高灰分、高灰熔点的煤还是低灰分、低灰熔点的煤进行气化,都会出现水冷壁能否均匀挂渣的问题、气化炉顶输气管换热器和废热锅炉积灰问题、高温中压干法飞灰过滤器除尘效率和能力问题、每天产生的大量飞灰的出路问题、激冷气压缩机故障多的问题、水洗冷却除尘的黑水系统故障问题。该工艺第一次用于煤化工(尤其是制合成氨、制甲醇、制氢),煤化工对除尘净化、长周期稳定正常生产的要求程度,远高于发电。一套新装置投入生产到正常稳定生产,当然需要有一个磨合期,但是不能太长,否则企业很难承受。本人认为可以首先在原料煤上作改进,改进多出故障的源头,先采用低灰分、低灰熔点的煤为原料,摸索出长周期稳产高产的经验。第二是增设采用激冷流程的备用气化炉,在现有Shell炉的基础上改激冷流程是很难的,应该采用多喷嘴下行制气的气化炉,这比较容易实现。 Shell干煤粉加压气化工艺,在环保问题上,对飞灰的出路和综合利用应给予高度重视。根据荷兰示范电厂的操作数据,飞灰和粗渣排出量见表3。表3 飞灰和粗渣逐年排出量统计排出物19992000200120022003平均占排出物总量的比例/%飞灰/t13524111208586102051146718.78粗渣/t573685317838532471354122781.22 粗渣含碳约为0.5%(质量分率),飞灰含碳约为40%(质量分率),原料煤含灰量平均约为13%(质量分率),按实际发电量折算,实际平均日投煤量为1210 t。5年内煤气化操作1340天,排出飞灰量为54902 t,平均日排飞灰量为41 t。如投煤量按2000 t/d计,每天从高温中压飞灰过滤器排出飞灰达68 t,如原料煤中含灰量为20%,每天排出飞灰达105 t。飞灰如何综合利用,或回气化炉、或找固定用户是值得企业关注的大问题,如找不到固定用户而随意堆放,将对周围环境产生污染。 现在问题已充分暴露出来,Shell干煤粉加压气化废热锅炉流程是为联合循环发电而设计的,不适应于煤化工生产。同时,装置本身还存在不少缺点和问题,有待解决。有些人士至今还不愿意承认当初选用Shell干煤粉加压气化工艺废热锅炉流程,用于煤化工的决策和盲目推广是错误的,我认为应当引起用户、有关领导、规划部门和工程公司的重视和深思。1.2 西门子GSP干煤粉加压气化工艺技术 西门子GSP干煤粉加压气化技术,属于气流床加压气化技术,是在1979年发展起来的。1979年前民主德国燃料研究所在弗来堡建立了一套热负荷为3 MW的煤气化中试装置,气化炉内有耐火材料衬里。1996年又建了一套热负荷为5 MW的煤气化中试装置,气化炉为水冷壁结构,曾试烧过各种不同原料和煤种。1984年在黑水泵市建立了一套热负荷为130 MW的气化装置,气化炉内有水冷壁內件,日投煤量为720 t褐煤,产气量为50000 m3/h,是一套商业性示范装置,用以生产燃料气,气化操作压力为2.8 MPa,操作温度为1400 。19841990年采用褐煤为原料气化,有约6年气化褐煤的经验。后来又气化过城市垃圾、工业废物、焦油等物料,主要是气化焦油。从1998年开始气化焦油,生产出来的煤气与固定层气化炉生产的煤气联网,用以生产甲醇和联合循环发电(IGCC)。这套装置至今尚在正常运行。2000年在英国巴斯夫工厂建成了一套GSP气化装置,用以处理化工厂排出含氯废水,气化炉热负荷为30 MW,气化压力为2.9 MPa,气化温度为1400 ,激冷型流程。2004年在捷克Vresova工厂又建成了一套GSP气化装置,原料为焦油,气化炉热负荷为175 MW,气化操作压力为2.8 MPa,操作温度为1400 ,用于联合循环发电。GSP气化炉当气化煤炭时,原料煤需经过干燥、磨细,磨细、干燥的干煤粉由气化炉顶部进入,属单烧嘴下行制气,底部排渣。气化炉内有水冷壁内件,目前国外最大用于气化褐煤的GSP气化炉日投煤量720 t褐煤,操作压力2.8 MPa,操作温度14001500 。为调节炉温需向气化炉内输入过热蒸汽,因此需另设供应4.55 MPa过热蒸汽的系统。据介绍气化高灰熔点的煤时,可以在原料煤中添加石灰石作助熔剂。因采用水激冷流程,投资比Shell炉要省得多,两者投资比是Shell炉GSP炉(1.431.56)1,适用于煤化工生产。据专利商介绍,喷嘴寿命长,可用1年以上,但实际生产每隔1个半月左右需要停炉检查一次和维修。碳转化率可达到98%99%,可气化褐煤、烟煤、次烟煤、无烟煤、石油焦及焦油,冷煤气效率高达80%83%,合成气有效气(COH2)含量高达90%左右,有效气(COH2)比煤耗550600 kg/km3,比氧耗330360 m3/km3,比蒸汽(过热蒸汽)耗120150 kg/km3。基本上与Shell法相似。正常时要燃烧液化气或其他可燃气体,以便于点火,防止熄火和确保安全生产。有文献介绍,如烧液化气,以一套日处理720 t褐煤的气化装置为例,每小时要消耗777.7 kg液化气,即每天消耗19 t液化气,以每吨液化气5000元计价,每天要烧掉9.5万元,一年2850万元。如只在开工时用液化气,正常生产时烧自产煤气,按热值折算,每小时要消耗自产煤气约3500 m3,以煤价450元/t计,自产煤气成本价0.450.5元/m3,每天要耗掉3.84.2万元,一年就是11401260万元,这笔费用很可观。该气化炉水冷壁的盘管内用压力为4.0 MPa(应高于气化压力)、温度达250 的水冷却,在盘管内不产生蒸汽,只在器外冷却水循环系统中副产0.5 MPa的低压蒸汽。目前国际上采用GSP气化工艺技术进行生产的有3家,但是现在都没有气化煤炭,其中黑水泵煤气化厂的那一套装置,只有6年气化褐煤的业绩,没有长期气化高灰分、高灰熔点煤的业绩。有待建立示范装置作长期运行考验。在气化用煤种选择上还是应该首选低灰分、低灰熔点的煤。目前国外在建的有加拿大能源公司的IGCC项目,投煤量为2000 t/d,及美国安全能源公司合成天然气项目,投煤量为22000 t/d。国内神华宁夏煤业集团有限责任公司已决定采用GSP干煤粉加压气化技术建设1670 kt/a甲醇制烯烃项目,投煤量为52000 t/d。此外还有山西兰花煤化工有限公司300 kt/a合成氨及100 kt/a甲醇项目,投煤量为22000 t/d,以无烟煤为原料。作为商业性示范装置,希望此两项目早日建成,顺利投产。1.3 GEGP(原Texaco德士古)水煤浆加压气化工艺技术 GEGP水煤浆加压气化技术,属气流床加压气化技术。原料煤经磨制成水煤浆后泵送至气化炉顶部,单烧嘴下行制气,原料煤的运输、制浆、泵送入炉系统比干粉煤加压气化要简单得多,安全可靠、投资省,单炉生产能力大。目前国际上最大的气化炉日投煤量为2000 t,国内已投产的气化炉能力最大为1000 t/d。国内设计中的气化炉能力最大为1600 t/d。该技术对原料煤适应性较广,气煤、烟煤、次烟煤、无烟煤、高硫煤及低灰熔点的劣质煤、石油焦等均能用作气化原料,但要求原料煤含灰量较低。煤中含灰量由20%降至6%,可节省煤耗5%左右,氧耗10%左右。另外,要求煤的灰熔点低。由于耐火砖衬里受高温抗渣的限制,一般要求煤的灰熔点在还原性气氛下的T41300 ,对于灰熔点稍高的煤,可以添加石灰石作助熔剂,降低灰熔点。还要求灰渣粘温特性好,粘温变化平稳,煤的成浆性能要好。气化压力从2.7、4.0、6.5到8.5 MPa皆有工业性生产装置在稳定长周期运行,装置建成投产后即可正常稳定生产。气化系统的热利用有两种形式:一种是废热锅炉型,可回收煤气中的显热,副产高压蒸汽,适用于联合循环发电;另一种是水激冷型,制得的合成气水气比高达1.31.4,能满足后续CO变换工序的需要,变换工序不需要外供蒸汽,适用于制氢、制合成氨、制甲醇等化工产品。气化系统不需要外供过热蒸汽及输送气化用原料煤的N2或CO2。气化系统总热效率高达94%96%,高于Shell干粉煤气化(为91%93%)和GSP干粉煤气化(为88%92%)。气化炉结构简单,为耐火砖衬里。气化炉内无转动装置或复杂的膜式水冷壁内件,所以制造方便、造价低,同时由于采用热壁炉,炉内热容量比较大,气化炉升温至1000 以上后,即可直接喷水煤浆投料,生产安全可靠。在开停车和正常生产时不像冷壁炉,无需连续燃烧一部分液化气或燃料气(合成气)。煤气除尘比较简单,只需要一个文氏管洗涤器和一台洗涤塔就可以了,无需价格昂贵的高温中压飞灰过滤器,投资省。单炉年运转时间为270300天。碳转化率达96%98%;有效气成分(COH2)为80%83%;有效气(COH2)比氧耗为336410 m3/km3,比煤耗为550620 kg/km3。国外已建成投产的装置有6套,15台气化炉。国内已建成投产的装置有8套,24台气化炉,正在建设、设计的装置还有4套,13台气化炉。已建成投产的装置最终产品有合成氨、甲醇、醋酸、醋酐、氢气、一氧化碳、燃料气、联合循环发电,装置建成投产后,都能连续稳定长周期运行。装备国产化率已达90%以上,由于国产化率高、装置投资较其他加压气化装置都低,有备用气化炉的水煤浆加压气化与不设备用气化炉的干煤粉加压气化装置建设费用的比例大致为Shell法GSP法多喷嘴水煤浆加压气化法GEGP水煤浆法(22.5)(1.41.6) 1.21。对于水煤浆加压气化技术国内已掌握了丰富的工程技术经验,已培养出一大批掌握该技术的设计、设备制造、建筑安装、煤种评价、试烧和工程总承包的单位及工程技术人员,所以从建设、建成投产到正常连续运行的周期比较短,这是业主所期望的。缺点是气化用原料煤受气化炉耐火砖衬里的限制,适宜气化低灰熔点的煤。碳转化率较低。气化装置的比氧耗和比煤耗较高。气化炉耐火砖使用寿命较短,一般为12年,国产砖寿命为一年左右,1台投煤量为1000 t/d的气化炉耐火砖约需500万元左右,有待改进。气化炉烧嘴使用寿命较短,一般使用2个月后,需停车检查、维修或更换喷嘴头部,这些均有待改进提高。 我国自鲁南化肥厂第一套水煤浆加压气化装置(2台气化炉)1993年建成投产以来,相继建成了上海焦化厂气化装置(4.0 MPa气化,4台气化炉,于1995年建成投产),渭河化肥厂气化装置(6.5 MPa气化,3台气化炉,于1996年建成投产),淮南化肥厂气化装置(4.0 MPa气化,3台气化炉,于2000年建成投产),金陵石化公司化肥厂气化装置(4.0 MPa气化,3, , , , 台气化炉,于2005年建成投产),浩良河化肥厂气化装置(3.04.0 MPa气化,3台气化炉,于2005年建成投产),南化公司气化装置(8.5 MPa气化,2006年建成投产),南京惠生气化装置(6.5 MPa气化,2007年建成投产)等装置。由于我国有关生产厂的精心消化吸收,已掌握了丰富的连续稳定运转经验,新装置一般都能顺利投产,短期内便能连续稳定、高产、长周期运行。并且掌握了以石油焦为原料的气化工艺技术。 还有一点需要提一下的是煤耗和氧耗问题,它与原料煤质的关系比较大。无论是Shell法或GSP法,在用干粉煤气化时,需向气化炉内输入过热蒸汽,其用量以有效气(COH2)计为120150 kg/km3,过热蒸汽与粉煤的比例为(0.220.25)1,相当于水煤浆中含水20%。干粉煤气化宣传资料上介绍的煤耗和氧耗,实际上是忽略了生产过热蒸汽所用的煤耗。在正常生产时,如需燃烧一部分然料气,必将增加氧耗及燃料气耗(折煤耗),备煤时煤干燥需要增加煤耗。宣传资料介绍,这两种方法的煤耗和氧耗比较低,有效气(COH2)煤耗为550600 kg/km3,氧耗为330360 m3/km3,加上以上这些煤耗和氧耗,实际上有效气(COH2)总煤耗将为590670 kg/km3,总氧耗将为380410 m3/km3。煤耗和氧耗不仅不低,而且比水煤浆气化法高或相仿。另外还要考虑制备干煤粉及输送干煤粉增加的电耗和激冷用返回气循环压缩机增加的电耗。 鉴于以上几点,水煤浆加压气化工艺技术是一项成熟、国产化率高、投资省、建成后就能顺利投产,长周期稳产高产的工艺技术。存在的缺点有待在生产实践中改进提高。1.4 多喷嘴(四烧嘴)水煤浆加压气化工艺技术 在“九五”期间,华东理工大学、兖矿鲁南化肥厂、中国天辰工程公司承担了国家重点科技攻关课题“新型(多喷嘴对置)水煤浆气化炉开发”。该技术属气流床多烧嘴下行制气,气化炉内用耐火砖衬里。开发成功后,相继在山东德州华鲁恒升化工股份有限公司建设了一套气化压力为6.5 MPa、日处理煤750 t的气化炉系统,于2005年6月正式投入运行,至今已经运行3年多,运转情况良好。在山东滕州兖矿国泰化工有限公司建设了两套气化压力为4.0 MPa、气化温度约1300 、日处理煤1150 t的气化炉系统,配套生产240 kt/a甲醇,联产IGCC联合循环发电,发电能力为71.8 MW,现在实际发电能力已达到80 MW。于2005年7月21日投料,运行至今。经考核验收,同样以北宿洗精煤为原料气化,多喷嘴水煤浆加压气化与单烧嘴加压气化相比,气化技术指标见表4,气化用煤种分析见表5。 表4 多喷嘴气化与单烧嘴气化结果对比表项目有效气(COH2)碳转化率/%有效气比煤耗有效气比氧耗/m3/km3含量/%/kg/km3多喷嘴气化84.998535314单烧嘴气化(Texaco)82839698约547约336表5 气化用煤质分析表项目数值工业分析水分(Mad)/%2.18灰分(Ad)/%7.32挥发分(Vdaf)/%45.44固定碳(FC)/%49.46元素分析全硫(Stad)/%2.84碳(Cad)/%74.73氢(Had)/%5.13氧(Oad)/%8.77氮(Nad)/%1.20灰熔点/DT1090ST1100HT1120FT 1130 多喷嘴气化炉与单烧嘴气化炉相比,有效气成分提高23个百分点,CO2含量降低23个百分点,碳转化率提高23个百分点,比煤耗降低约2.2%,吨甲醇煤耗减少100150 kg,比氧耗降低6.6%,复合床洗涤冷却系统的热质传递效果好,液位平稳,避免了GEGP德士古炉装置带水带灰问题,这是很有吸引力的。同时调节负荷比单烧嘴气化炉灵活。适宜于气化低灰熔点的煤。已建成及在建项目共12家,31台气化炉。已顺利投产的有3家,5台气化炉。在建的最大气化炉投煤量为2000 t/d,6.5 MPa。值得一提的是该技术现已跨出国门,美国Valero能源公司最近已决定采用多喷嘴水煤浆加压气化技术,采用石油焦为原料加压气化。目前已与华东理工大学签订了许可证授权合同,与中国天辰工程公司签订了基础设计合同。该技术暴露出来的问题是烧嘴使用寿命与GEGP法一样较短;气化炉顶部耐火砖磨蚀较快,以及同样直径同生产能力的气化炉,其高度比GEGP德士古单烧嘴气化炉高,又多了三套烧嘴和相应的高压煤浆泵、煤浆阀、氧气阀、止回阀、切断阀及连锁控制仪表,一套投煤量1000 t/d的气化炉投资比单烧嘴气化炉系统多20003000万元。与一个有3套投煤量为1000 t/d的气化炉、日处理原料煤2000 t的煤气化装置比较,增加投资60009000万元,每年要多增加维护检修费用,且增加了单位产品的固定成本。但该技术属我国独有的自主知识产权技术,在技术转让费方面比引进GEGP德士古水煤浆气化技术要少得多,还是很有竞争力的。该技术有待在生产实践中进一步改进提高。1.5 两段式干煤粉加压气化工艺技术 TPRI两段式干煤粉加压气化技术是西安热工研究院有限公司开发成功的,具有自主知识产权。1996年建成一套0.7 t/d的试验装置,完成了14种典型动力煤种的加压气化试验研究。2004年建成了处理煤量为3640 t/h 的中试装置,完成了4种煤粉的气化试验,通过了168 h连续运行考核,累计运行达2200 h以上,达到了下列技术指标:碳转化率98%,有效气(COH2)比煤耗520 kg/km3,比氧耗310 m3/km3,有效气(COH2)含量89%93%,冷煤气效率81%84%,热效率90%95%。可气化煤种为褐煤、烟煤、贫煤、无烟煤,以及高灰分、高灰熔点的煤,可气化煤种的水分范围4%35%,可气化煤种灰分范围5%31%,可气化煤种灰熔点范围12001500 。气化压力3.04.0 MPa,气化温度范围13001500 ,不产生焦油、酚等,其典型合成气成分为CO 62.38%,H2 29.36%,CO2 2.76%,CH4 0.26%,N2 4.87%,H2S等0.37%。该技术的特点是采用两段气化,以四个对称的烧嘴向气化炉底部喷入干煤粉(占总煤量的80%85%)、过热蒸汽和氧气,进行一段气化,熔融排渣。中部喷入占总煤量15%20%的煤粉和过热蒸汽,利用下部上来的煤气显热进行二段气化,同时将下部上来的14001500 高温煤气急冷至900 ,替代了Shell煤气化技术中的循环返回气激冷工序,可以节省投资,提高冷煤气效率和热效率;气化炉采用水冷壁结构,其缺点是合成气中CH4含量较高,对制合成氨、甲醇、氢气不利。废热锅炉型气化装置适用于联合循环发电,其示范装置投煤量2000 t/d级两段式干煤粉加压气化炉(全废热锅炉流程)已决定用于华能集团“绿色煤电”项目,设计气化压力3.03.5 MPa,气化操作温度14001500 ,产气量165000 m3/h,有效气(COH2)比氧耗310 m3/1000 m3,冷煤气效率83%,有效气(COH2)含量91%,发电量250 MW。另一套示范装置为两段式干煤粉加压气化炉(激冷流程),已决定用于内蒙古世林化工有限公司300 kt/a甲醇项目,设计气化压力为4.0 MPa,气化操作温度14001500 ,输送干煤粉的气体为CO2,单台气化炉设计投煤量为1000 t/d(激冷流程),有效气产量71500 m3/h,有效气(COH2)比氧耗310 m3/1000 m3。冷煤气效率83%,有效气(COH2)含量91%。第三套示范装置用于山西华鹿200 kt/a甲醇项目,设计气化压力4.0 MPa,采用高灰熔点(FT1500 )煤,气化操作温度1500 ,输送干煤粉的气体为CO2,单台气化炉设计投煤量为1000 t/d(激冷流程),煤气产量79700 m3/h,有效气流量71500 m3/h,有效气(COH2)比氧耗330 m3/1000 m3,冷煤气效率81%,有效气(COH2)含量89%。希望这三套示范装置能预期顺利投产。 两段式干煤粉加压气化技术与Shell干煤粉加压气化技术的不同之处,在于两段式干煤粉加压气化技术采用两段气化,将气化炉出口的煤气温度从14001500 降至900 ,而Shell干煤粉加压气化技术是采用循环返回气将气化炉出口煤气温度激冷至900 ,虽然都达到了将气化炉出口煤气降至900 的目的,但两段式气化存在以下几个问题。 (1)因为从气化炉中部喷入干煤粉和过热蒸汽后,利用下部上来的14001500 高温煤气使中部喷入的干煤粉干馏热解和气化,存在气化炉出口煤气含CH4量较高的问题,不利于制氨、制甲醇和制氢。 (2)中部喷入的干煤粉产生的灰由于环境温度低于灰熔点,不可能呈熔融态排出炉外。同时,由于二段气化后产生的煤气总量加大,二段气化过程产生的灰渣和飞灰必将大量被煤气从气化炉顶部带出。在二段气化中部喷入的干煤粉量占总煤量的15%20%,带出的灰渣和飞灰量也就会相应增加,这部分飞灰的量(包括带出的灰渣)必将大于Shell加压气化。再加上Shell炉的循环返回气量为气化装置实际煤气产量的80%85%,总气量达气化装置实际煤气产量(或煤气流速)的180%185%,而改为两段气化后,出气化炉的煤气量只相当于Shell炉出口总气量的55%,即煤气流量减少到只有55%,相应煤气流速降低到55%,这是一个很不利的操作条件。气流速度低,在换热器和废热锅炉处容易积灰、堵灰,再加上随煤气带出的飞灰和灰渣含量增多,系统积灰和堵灰现象将更为严重,这是废热锅炉型流程装置设计时要加以重视的问题。 (3)由于从气化炉带出的飞灰和灰渣量较大,在水激冷型流程装置设计时也同样必须加以重视。 (4)受两段气化的制约,必然是一段气化的干煤粉、过热蒸汽和氧气从炉子下部进入,二段气化的干煤粉和过热蒸汽从炉子中部进入,产生的煤气从气化炉顶部出去,所以水激冷型流程和装置比从气化炉顶部进料、底部出煤气的熔渣型气化炉难处理,不但系统复杂,并且投资高。 总之,两段式干煤粉加压气化技术是一项新生事物,从中间试验到放大为示范装置,再进入到商业化运行,必然会碰到许多难题,会有一个在运行中摸索、磨合和解决难题的过程。为了吸取同时大量推广Shell干煤粉加压气化技术的教训,建议在已决定先建3套示范装置的基础上,暂停再建示范装置或商业化运行装置,待这3套示范装置取得顺利投产和长周期稳产高产的经验后,再改进提高,推广应用。2 对五种煤气化工艺技术的比较 (1)气化原料制备和输送方式 气化原料进料方式可以分为干煤粉进料和水煤浆进料。壳牌、西门子和西安热工研究院的TPRI两段式干煤粉加压气化技术属干煤粉进料。GEGP水煤浆加压气化技术和华东理工大学的多喷嘴水煤浆加压气化技术属水煤浆进料。水煤浆加料系统比干煤粉加料系统简单、投资省、且安全可靠。 (2)煤气化炉结构形式 煤气化炉结构形式可以分为热壁炉(内衬耐火材料)和冷壁炉(炉内安装有水冷壁)。壳牌、西门子和西安热工研究院的TPRI两段式干煤粉加压气化技术的气化炉均属冷壁炉,炉内安装有水冷壁,适合于气化灰熔点较高的原料煤。据专利商介绍,炉内气化温度可以高达15001600 ,气化高灰熔点的煤时必须添加助熔剂。作者认为气化高灰熔点的煤,不但氧耗高而且水冷壁挂渣都不会很顺利。所以选用原料煤时,还是应该首选低灰熔点的煤。GEGP(原德士古)和华东理工大学的多喷嘴水煤浆加压气化炉均属热壁炉,炉内衬有耐火砖,适合气化低灰熔点(还原性气氛下,FT1300 )的煤。当气化灰熔点稍高的煤时,可以添加助熔剂。 (3)热回收利用形式 从气化炉出来的1400 以上高温煤气的热回收利用,有废热锅炉(废锅流程)和水激冷型(激冷流程)两种形式,废锅流程适用于IGCC联合循环发电。激冷流程适用于煤化工生产,也可用于煤化工生产与IGCC联合多联产发电。 为了防止从气化炉带出的熔渣和飞灰粘结在换热器和废热锅炉上,堵塞气道和影响传热效率,Shell将200 的返回气用循环压缩机送至气化炉出口,使14001500 的高温煤气降温到900 。TPRI两段式干煤粉加压气化技术采用两段气化,底部喷入总煤量80%85%的干煤粉及氧气和过热蒸汽,中部喷入总煤量15%20%的干煤粉及过热蒸汽,利用从底部来的14001500 高温煤气将中部喷入的干煤粉干馏和气化,使煤气温度降至900 ,替代了Shell法循环返回气的激冷工序,可以节省投资,但是也存在问题。在正常生产时,将会因含尘多、气流速度低而使废热锅炉出现堵灰现象,这些有待在工程设计中予以解决。 壳牌废锅流程的干煤粉加压气化技术和TPRI两段式(废锅流程)干煤粉加压气化技术适合于IGCC联合循环发电,TPRI两段式(激冷流程)干煤粉加压气化技术、西门子干煤粉加压气化技术、GEGP水煤浆加压气化技术和多喷嘴水煤浆加压气化技术适用于煤化工生产。 (4)喷嘴数量 气化炉的喷嘴数量可以是单喷嘴也可以是多喷嘴(一般为四喷嘴对置式)。GEGP法与GSP法属单喷嘴气化炉,Shell法、两段式气化法、多喷嘴水煤浆法属多喷嘴气化炉。多喷嘴对置式气化炉的喷嘴之间协同作用好,气化炉负荷可调节范围较大,适用于大型化的气化炉,现在GSP法已决定对1000 MW约246000 m3/h的有效气(COH2)气化炉采用双喷嘴,GEGP也认为单喷嘴气化炉生产负荷只适用投煤量小于2000 t/d的气化炉。 (5)煤气洗涤、除尘、渣水处理流程及设备对五种煤气化技术的煤气洗涤、除尘、黑水闪蒸及热回收等渣水处理流程及设备进行比较,笔者认为华东理工大学的技术比较好,净化后的煤气含尘量已达到GEGP法小于1 mg/m3的水平。他们设计的复合床洗涤塔冷却及热质传递效果好,液位平稳,避免了GEGP法带水带灰的问题;渣水处理系统则采用了直接换热的方式,效率高,克服了设备结垢和堵塞的问题。 (6)废水处理问题 水煤浆制备时除采用黑水回收系统排出的灰水之外,还要补充一部分新鲜水。考虑到全厂废水的综合处理,工程设计上可以考虑将一部分全厂排出的废水作为制备水煤浆的补充水。上海焦化总厂三联供工程设计时,采取将焦化分厂排出的部分焦化污水作为制备水煤浆的补充水,这是比较好的方法。3 四种煤气化工艺的技术经济比较 这里选择Shell和GSP两种干煤粉加压气化工艺技术(Shell法是废热锅炉流程,GSP法是激冷流程)与多喷嘴和GEGP两种水煤浆加压气化工艺技术(激冷流程)进行技术经济比较。两段式干煤粉加压气化技术因为至今只通过中间试验,尚无商业化运行业绩,所以暂不作技术经济比较。比较的基准如下。 (1)原料煤 采用北宿水洗精煤为原料,指标如下。 灰分含量 7.32% 灰熔点 DT 1090 ST 1100 HT 1120 FT 1130 水煤浆浓度&nbs, p;, ; 61% (2)气化压力 4MPa (3)碳转化率 Shell、GSP、多喷嘴取98% GEGP 取96% (4)有效气(COH2)产量 160000 m3/h (5)比较范围 煤贮运、干煤粉制备及输送、水煤浆制备及输送、气化装置、空分、CO变换等可比部分。 四种煤气化工艺(可比部分)消耗指标比较见表6,投资比较见表7,有效气(COH2)成本估算见表8。 从比较结果可以得出以下结论。 (1)用于煤化工生产,干煤粉加压气化投资高于水煤浆加压气化,废热锅炉流程投资高于激冷流程,多喷嘴水煤浆加压气化投资高于GEGP水煤浆加压气化;Shell法的软件费远高于其他三种;煤气化装置的投资比(含软件费)为ShellGSP多喷嘴GEGP2.141.461.161。Shell法的总投资比GEGP法约多5.6亿元,比多喷嘴约多5.24亿元。 GSP法的总投资比GEGP法约多2.3亿元,比多喷嘴约多2亿元。 (2)以有效气(COH2)可比部分成本估算进行比较,多喷嘴水煤浆法与GEGP法最低,为0.425元/m3,Shell法最高,为0.513元/m3,GSP法居中,为0.455元/m3。Shell法的生产成本比水煤浆法每年约多1亿多元。 (3)由于多喷嘴法与GEGP法设备材料国产化率高,所以投资较少,GSP法如提高设备材料国产化率,装置投资和成本可望进一步降低。表6 四种煤气化工艺(可比部分)消耗指标比较序号项目名称ShellGSP多喷嘴GEGP1有效气(COH2)比煤耗/kg/km35305305355472耗煤量/t/d20352035206721003有效气(COH2)比氧耗/m3/km33253253143364氧耗量/m3/h520005200050240537605电/kWh1037090004000400065MPa过热蒸汽/t/h202074.5 MPa蒸汽/t/h187568副产4.5 MPa蒸汽/t/h-170-40-22-229副产0.5 MPa蒸汽/t/h-20-38-10-1010脱氧脱盐水/t/h209863636 注:GSP法中尚未计入经常的安全防护用液化气或煤气消耗 表7 四种煤气化工艺(可比部分)投资比较 万元序号项目名称ShellGSP多喷嘴GEGP1煤贮运42004200420042002干煤粉制备及输送12500125003水煤浆制备及输送500050004气化装置854005550050000410005含软件费后气化装置投资919205882751386437726煤气化装置总投资(2)(3)(4)979006800055000460007含软件费的煤气化装置投资1044207132756386487728 投资比2.141.461.1619空分3200032000300003400010CO变换760076005200520011可比项目合计141700111800944008940012含软件费的可比项目合计1482201151279578692172 表8 四种煤气化工艺(可比部分)有效气(COH2) 成本估算序号项目名称单价年耗量万元/aShellGSP多喷嘴GEGP年耗量万元/a年耗量万元/a年耗量万元/a年耗量万元/a1原料煤(干)450元/t610 kt 27450610 kt 27450620 kt 27900630 kt 283502氧气0.25元/m33.744108 93603.744108 93603.617108 90433.87108 96753电0.45元/kWh7466.4104 33606480104 29162880104 12962880104 129645MPa过热蒸汽100元/t144 kt 1440144 kt 1440 54.5MPa蒸汽90元/t1350kt 12150410 kt 3690 6副产蒸汽(4.5MPa)90元/t-1230kt -11070-290kt -2610-160kt -1440-160kt -1440

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论