


全文预览已结束
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
中国最大型、最专业的中小学教育资源门户网站 27.2.1 用边角关系判定三角形相似 教案【知识与技能】1. 初步掌握 “两组对应边的比相等且它们的夹角相等的两个三角形相似”的判定方法.2. 能运用它们解决具体问题.【过程与方法】经历从实验探究到归纳证明的过程,发展学生的合理推理能力.【情感态度】培养学生的观察、动手探究、归纳总结能力,形成推理、说明的科学态度.【教学重点】两个三角形相似的判定定理及其应用.【教学难点】准确运用判定定理来判定三角形是否相似.一、情境导入,初步认识问题 判定两个三角形全等我们有SAS方法,类似地,判定两个三角形相似是否也有类似的简单方法呢?【教学说明】设置疑问,引导学生思考,尝试用类似的思路来判定两个三角形相似,激发求知欲望.二、思考探究,获取新知思考 如图,在ABC和ABC中,若A=A,且,那么ABC与ABC是否相似?为什么?21教育网【教学说明】通过“思考1”的学习,对于“思考2”教师可让学生也尝试着在ABC中构造ADE,类似地得到ADE ABC,21ADEABC,从而ABCABC.教师巡视,学生可相互交流,针对学生实际可作适当的提示,帮助学生完成证明,获得理性思考的体验.21cnjycom相似三角形的判定定理 如果两个三角形的两组对应边的比相等,并且相应的夹角相等,那么这两个三角形相似. 问题 如果定理中的“夹角相等”换成“其中一边的对角对应相等”,其他条件不变,这样的两个三角形仍能相似吗?若相似,请予以证明;若不相似,请举一反例.21cnjy【教学说明】教师可与学生一道回顾“两 边对应相等,且其中一边的对角也相等的两个三角形不一定全等”时所举出的反例,使学生能 轻松地过渡到判别它们不一定能相似时可能存 在的一种情形.加深对定理中“夹角相等”这一条件的理解. 【来源:21世纪教育网】三、典例精析,掌握新知例1 教材P33中例【教学说明】教师可让学生自主完成,让学生从中体验成功的喜悦.对于题,还可让学生说出他们的相似比是多少;对于题,应引导学生用小边比小边,中边比中边,大边比大边的比值进行说明,不能出现混乱.进一步地,若要使得两个三角形相似,可改变其中一条线段的长,让学生试试看.21世纪*教育网例2 如图,四边形ABCD中,B =ACD,AB = 6,BC=4,AC=5,CD=7.5,你能求出线段AD的长吗?说说你的理由.www-2-1-cnjy-com【教学说明】可让学生独立完成试试看,也可以相互交流,共同探讨解题思路,然后予以评析,巩固本节所学知识.2-1-c-n-j-y四、运用新知,深化理解根据下列条件,判断ABC与ABC是否相似,并说明理由:A=40,AB=8cm,AC=15cm,A=40,AB=16cm,AC= 30cm;【教学说明】 1、2题让学生独立完成,第3题可集体评讲(在学生思考后),注重于分类思想.在完成上述题目后,教师引导学生完成创优作业中本课时的“名师导学”部分.21*cnjy*com五、师生互动,课堂小结1.与同伴交流论证判定定理中的证明方法,谈谈你的认识;2.判定定理中“夹角相等”这个条件是否可换成“一角对应相等”,说说你的理由.1.布置作业:从教材P4244习题27.2中选取.2.完成创优作业中本课时的“课时作业”部分.本课时教学可采用类比的方法进行,一方面可类比两个三角形全等的判定方法,另一方面可类比上一课时中有关两个三角形相似的判定方法.教学时应注意突出学生的主体地位
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 河南省许昌市建安区第三高中2026届化学高二第一学期期末达标检测模拟试题含答案
- 四川省达州市开江县普安中学2024-2025学年七年级下学期第三次月考数学试卷(含答案)
- 汉字录入课件
- 北师大版五年级上册数学期末检测卷(无答案)
- Unit1 Friendship单元综合测评卷(含答案)译林版(2024)八年级英语上册
- 3DMAX基础建模知到智慧树答案
- 《企业财务会计》知到智慧树答案
- 电子游戏安全风险防范策略
- “两山”之光:理论与实践知到智慧树答案
- 军事理论(四川卫生康复职业学院)知到智慧树答案
- GB/T 9869.2-2025橡胶用硫化仪测定硫化特性第2部分:圆盘振荡硫化仪
- 保密教育培训课件内容
- 陕西省专业技术人员继续教育2025公需课《党的二十届三中全会精神解读与高质量发展》20学时题库及答案
- 2024-2025学年人教版数学五年级下学期期末试卷(含答案)
- 中华人民共和国政府信息公开条例解读PPT
- 同济大学信纸
- 采气工技能操作题库
- 贵州省遵义市红花岗区小升初数学试卷
- 高压氧治疗相关知识
- 外科学麻醉专题知识讲座培训课件
- 课程设计与评价
评论
0/150
提交评论