




已阅读5页,还剩3页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
【教学目标】1、让学生通过经历预测猜想实验观察数据处理合情推理探究创造的过程,理解和掌握分数的基本性质,知道它与整数除法中商不变性质之间的联系。2、根据分数的基本性质,学会把一个分数化成用指定的分母做分母或指定的分子做分子而大小不变的分数,为学习约分和通分打下基础。3、培养学生观察、分析和抽象概括的能力,渗透事物是互相联系、发展变化的辩证唯物主义观点。体验到数学验证的思想,培养敢于质疑、学会分析的能力。【教学重点】使学生理解分数的基本性质。【教学难点】让学生自主探索,发现和归纳分数的基本性质,以及应用它解决相关的问题。【教具准备】课件,五年级数学学具盒,计算器。【教学过程】一、 呈现材料,发现问题、师:老师这儿有一个关于孙悟空在花果山上做美猴王时发生的故事,想听吗?花果山上的小猴子最喜欢吃美猴王做的饼了,有一天,猴王做了三块大小一样的饼分给小猴们吃,它先把第一块饼平均分成四块,分给猴一块,猴见了说:“太少了,我要两块。”猴王就把第二块饼平均切成八块,分给猴两块,猴更贪,它抢着说:“我要三块,我要三块。”于是,猴王又把第三块饼平均分成十二块,分给猴三块。评析:创设情境,在学生喜欢的人物分饼的故事中直接导入本课,这样设计可以吸引学生的注意,让学生主动感知,主动去思考,激起学生的探究兴趣,让学生产生想获知结果的欲望。内含情感与态度目标:孙悟空,做事认真仔细,机智,勇敢,本事大等。师:听到这里,你有什么想法吗?或你有什么话要说吗?生1:我觉得孙悟空很聪明。生2:我认为三只小猴分到的饼是一样多的。生3:我认为猴王这样分很公平,第1只小猴分到了一只饼的1/4,第2只小猴分到了一只饼的2/8,第3只小猴分到了一只饼的3/12,这三只小猴分到的饼是一样多的。评析:一般的教师会在这里提出“哪只猴子分得的饼多?”或“你认为猴王这样分公平吗?”这样的问题。但这位教师却提出“听到这里,你有什么想法吗?或你有什么话要说吗?”。这个问题优于前两个问题是因为学生在思考时思路更深、更广。有效的问题有助于摆脱思维的滞涩和定势,促使思维从“前反省状态”进入“后反省状态”,问题的解决带来“顶峰”的体验,从而激励再发现和再创新,有效的问题有时深藏在潜意识或下意识中,“顿悟”由此而生。有效的创设问题可以激发学生创新意识。内含情感与态度目标,体现公平。、师:大家都觉得其实三只小猴分到的饼一样多,那你们有什么方法来证明一下自已的想法,让这三只小猴都心服口服呢?怎么验证?() 师引导学生充分利用桌面上学具盒中的学具(其中一条长方形纸片为事先放入,其它都是五年级数学学具盒中原有的),小组合作,共同验证这三个分数的大小?() 师:实验做完了吗?结果怎样?哪个小组先来汇报验证的情况?组1:我们组把24根小棒看作单位“1”,平均分成4份,其中的一份有6根,就是1/4。平均分成8份,其中的二份有6根,就是2/8。平均分成12份,其中的3份也有6根,就是3/12。所以1/42/83/12。组2:我们组把24个小立方体看作单位“1”,平均分成4份,其中的一份有6个,就是1/4。平均分成8份,其中的二份有6个,就是2/8。平均分成12份,其中的3份也有6个,就是3/12。所以1/42/83/12。组3:我们把一个圆平均分成4份,取其中的一份是1/4,我们把同样大小的圆平均分成8份,取其中的两份是2/8,我们再把同样大小的圆平均分成12份,其中的3份用3/12表示,我们再把圆片的1/4、2/8、3/12叠起来是一样大的,所以1/42/83/12。(注1/4圆是学具中本来就有的,2/8是用两个1/4圆合在一起,3/12是用2个1/3合在一起)组4:我们组是这样验证的。我们把同样大小的长方形纸平均分成4份,其中的一份是1/4,取另外一张再平均分成8份,其中的两份是2/8,接着取另外一张继续平均分成12份,其中的3份是3/12,然后也叠在一起,大小一样,所以我组也认为1/42/83/12。组5:我组与他们的验证方法都不一样,我们是计算的:1/4=14=0.25;2/8=28=0.25;3/12=38=0.25。三个分数都等于0.25,所以1/42/83/12。评析:书本上的设计是用折纸来验证这三个分数相等,在这里执教者大胆的放大教材,把一系列探究过程放大,把“过程性目标”凸显出来。同时也为学生探究方法的多元化创造了条件,出现了多种验证的方法。还有这样设计把一些知识联系起来,用计算器的目的,是和五年级上学期的一节计算器课联系起来,而且为验证猜想做准备,可以比较分数的大小,节约时间。和单位“1”的概念联系起来,体现出了单位“1”概念中的两层含意。、组织讨论() 师:既然三只小猴子分得的饼同样多,那么表示它们分得饼的分数是什么关系呢?(投影出示分饼图)板书1/42/83/12() 你能从图上找到另一组相等的分数吗?板书3/46/89/12评析:书本例1为比较3/46/8和9/12的大小。执教者在创设情景时选择的分数是有目地的、引入新课师:黑板上二组相等的分数有什么共同的特点?学生回答后板书。生:分数的分子和分母变化了,分数的大小不变。师:我们今天就来共同研究这个变化的规律。、引导猜测师:你们猜猜看,在这两组相等的分数中,分子和分母发生了怎样的变化,而分数的大小不变。生1:分子和分母都乘以一个相同的数,分数的大小不变。生2:分子和分母都除以一个相同的数,分数的大小不变。生3:分子和分母都加上一个相同的数,分数的大小不变。生4:分子和分母都减去一个相同的数,分数的大小不变。师:根据学生回答板书评析:这样设计注意了知识背景的丰富性,拓宽了“分数基本性质”的研究背景。在教学中,学生充分观察学习材料,发现问题后,教师引导学生提出猜测。学生的实际猜想可能会出现观点不一,表达方式不同,或者不够完整,甚至是错误的,这都不重要,重要的是它是根据学生已有的知识经验提出的,能够自已提出问题,已经向探索迈出了可喜的一步。教师留给了学生足够的思空间,让学生充分展现心中的疑惑,呈现了四种不同的假说。如此一来,学生不但是进入到了知识的学习过程中,更是进入到了知识的研究过程中。“分数基本性质”的研究背景从知识层面上来看已经拓宽了,从以前的只局限于“分子和分母同时乘(或除以)一个相同的数,分数的大小不变”拓宽到对“分子和分母同时乘(或除以、或加上、或减去)一个相同的数,分数的大小不变”的研究,有利于学生更为充分地经历“性质”形成的过程,全面地理解和认识“分数的基本性质”,同时还为沟通加、减、乘(绿色圃中小学教育网 http:/WWW.Lspjy.cOm 原文地址/thread-20478-1-1.html)、除四种情况在分数的大小不变过程中的区别和联系奠定了基础。二、 活动研究,探究规律。、引导研究,感知规律师:猜测是不一定正确的,需要通过验证才能知道猜测是不是有道理,规律是否存在。我们需要对以上的猜测进行验证。你们准备如何进行验证?生:举一些例子来验证师:怎样举例验证呢?我们以其中的一个猜测来试试看好吗?我们选哪一个为好?生:分子和分母都乘以一个相同的数,分数的大小不变。师:好,我们就选这个,试试看。学生以小组为单位进行尝试验证,教师作适当指导。反馈:根据学生回答板书/.1/./.师:看了这些小组的举例验证,能说明这个猜测有道理吗?有什么要补充的吗?(学生没有答出除外)师:谁能写出几个与相等的分数。比一比谁写的多。生回答,师板书/师:这样写得完吗?生:不能师:分子和分母是不是可以乘以所有的数。生:0要除外。师:为什么0要除外呢?生:0不能做除数,也不能做分母。评析:学生在巩固知识的过程中得出结论:这样是永远也写不完的。这时,教师适时点拨,将学生的思维引向更深层次,从而自然得出“除外”的结论。这样形成的记忆是深刻的。、自主研究,理解规律师:我们已经用举例验证的方法验证了“分数的分子和分母都乘以一个相同的数分数的大小不变是正确的。那么,其它三个猜测是不是也是正确的呢?接下来我们每一个小组选取一个猜想进行验证。学生自由选择,教师适当进行调配。师:为了在研究中能够节约时间,我给大家提供了一些材料,你可以借助这些材料进行验证。当然,你有更好的方法也可以用。学生小组合作进行研究,教师作适当指导。反馈交流小结:师:看来在分数里,只有分数的分子和分母都乘或都除以相同的数(除外)分数的大小不变,而分子和分母同时增加或者同时减少相同的数,分数的大小是会变的。这就是我们今天学习的内容。出示课题:分数的基本性质师:你们认为性质中哪几个字是关键字。生:“都”,“相同的数”,“除外”生齐读投影上的分数的基本性质评析:这样的设计使学生对四个“假说”的验证过程认知比较充分。这不仅为学生准确理解和把握“分数的基本性质”提供了丰富的感性材料,同时,也为学生体验数学学习的过程创造了条件。教师在该环节的处理上出于对学生实际的考虑,安排了两个层次。第一层次选择“分子和分母都乘以一个相同的数,分数的大小不变。”这一猜测进行验证,一是让学生充分体验一次验证的过程,认识到过程中的注意点,二是有利于教师下一步的调控和指导。正是有了这样的引导,学生在第二层次的独立验证活动中,才能够更多地关注数学学习内在的东西,排除了一些不必要的干扰。学生探究的过程比较清晰,对学习方法的体验也比较深刻、到位。由于这样的设计,使整节课的重心从关注知识的传授转移到关注学习方法的指导上。更重要的是这样的设计体现出了猜测验证结论的思维模式。、沟通说明,揭示联系。师:今天我们学习的分数的基本性质与我们以前学过的什么知识很相似。生:商不变性质出示商不变性质师:分数的基本性质与商不变性质有什么相通的地方吗?生:分数中的分子相当于除法中的被除数,分母相当于除法中的除数,分数值相当于商。师:我们平时所学的有些知识和知识之间是有联系的。有时候与我们身边的事也是有联系的。评析:引导学生沟通分数的基本性质与商不变性质之间的联系,可以使学生体会到知识与知识之间有时是可以联系起来的。这样的设计有效的培养了学生的比较、分析、综合的能力。出示动画片断。(注孙悟空有一次因一时大意,被妖怪关在了一个金钵中,金钵能随孙悟空变大而变大,随孙悟空变小而变小,孙悟空出不来。)师:孙悟空为什么跑不出来,这与我们今天学的知识是不是有点相似。生:分数的基本性质。评析:数学中的概念是比较抽象的,这样的设计可以帮助学生理解和记忆。同时也可以让学生体会到知识与生活中的一些现象是可以联系的。例如自从一八四五年德国化学家霍夫曼发现苯之后,许多化学家绞尽脑汁要破解它的分子结构,然而对当时的人类从未想到环状的分子结构的存在,所以化学家们纷纷撞壁而相继放弃。一八六五年某个寒夜,已经研究多年不肯罢手的化学家库凯里在一整天徒劳无功的探索后,歪在火炉边打盹,意识滑入梦乡,然后,奇怪的事情发生了,他在梦中看见一大堆原子在眼前雀跃,其中有一群原子排成长长的链,在那儿扭动、盘卷,再仔细一看,啊!是一条蛇咬住自己的尾巴,而且得意洋洋地在他面前猛烈旋转!像被闪电击中,库凯里立刻惊醒,领悟到苯的分子结构是前人未曾梦想过的封闭环状,难怪那些持旧有的开放式链状观点来研究的专家通通碰了一鼻子灰。从此,化学研究也因为这个革命性的发现而进入新的里程碑。在那个看见蛇咬尾巴的梦境中,库凯里领悟到苯的环状结构式。这样设计可以使学生在回答什么是分数的基本性质时,先想到动画,再用语言表达出内容。同时也可以使学生体会到运用这样的思维方式为以后遇到难以解决的问题是可以提供一定的帮助的。内容情感与态度目标:做事或解题时不能粗心大意。师:猴王运用什么规律来分饼的?你们会运用今天的知识来解答问题吗?三、 应用性质,解决问题。、出示例:思考:要把和分别化成分母是而大小不变的分数,分子、分母怎么变化?变化的依据是什么?板书、多层练习,巩固深化() 书本试一试游戏(第一关:初露锋芒、第二关:勇往直前、第三关:再接再厉、第四关:大获全胜。每一关都有相应的练习题)评析:练习设计层次安排合理、形式多样、由浅入深。采用游戏的形式,抓住学生好胜的心理,在不知不觉中完成了练习,节约了练习的时间。体现了趣味性、生动性、开放性。既巩固了新知,又发展了思维。四、 课堂总结师:今天我们学习了分数的基本性质,回忆一下,我们是怎样学的?生、我们是用举例的方法学的。生、我们是用验证的方法学的。生、我们是通过比较发现了规律。师:是的,这节课我们在学习过程中,通过“猜想”、举例、验证等方式,概括得出了分数的基本性质并且运用这一知识解决了一些问题。师:我这里还为大家准备了一个故事。(哥德巴赫猜想加陈景润的故事)师:你听了有什么启发吗?课后同学们可以互相讨论一下。评析:让学生回忆这节课的学习历程和发现的一些规律,这样做更能体现“过程”。让学生带着问题下课,把对数学研究的兴趣延伸至课外,鼓励学生大胆创新。 一、故事引人,揭示课题。1教师讲故事。猴山上的猴子最喜欢吃猴王做的饼了。有一天,猴王做了三块大小一样的饼分给小猴们吃,它先把第一块饼平均切成四块,分给猴一块。猴2见到说:“太小了,我要两块。”猴王就把第二块饼平均切成八块,分给猴2两块。猴3更贪,它抢着说:“我要三块,我要三块。”于是,猴王又把第三块饼平均切成十二块,分给猴3三块。小朋友,你知道哪只猴子分得多吗?讨论:哪只猴子分得的多?让学生发表自己的意见,教师出示三块大小一样的饼,通过师生分饼、观察和验证,得出结论:三只猴子分得的饼一样多。引导:聪明的猴王是用什么办法来满足小猴子们的要求,又分得那么公平的呢?同学们想知道吗?学习了“分数的基本性质”就清楚了。(板书课题) 一上课,先听讲一段故事,学生非常乐意,并会立即被吸引。思考故事当中提出的问题,学生自然兴趣浓厚。通过故事设疑,激起了学生探求新知的欲望。2组织讨论。(1)既然三只猴子分得的饼同样多,那么表示它们分得饼的分数是什么关系呢?这三个分数什么变了,什么没有变?让学生小组讨论后答出:这三个分数是相等关系, 1/4=2/8=3/12,它们平均分的份数和表示的份数也就是分数的分子和分母变化了,但分数的大小不变。(2)猴王把三块大小一样的饼分给小猴子一部分后,剩下的部分大小相等吗?你还能说出一组相等的分数吗?通过观察演示得出: 3/4=6/8=9/12。(3)我们班有40名同学,分成了四组,每组10人。那么第一、二组学生的人数占全班学生人数的几分之几?引导学生用不同的分数表示,然后得出: 1/2=2/4=20/40。3引入新课:黑板上三组相等的分数有什么共同的特点?学生回答后板书:分数的分子和分母变化了,分数的大小不变。它们各是按照什么规律变化的呢?我们今天就来共同研究这个变化规律。二、比较归纳,揭示规律。1出示思考题。比较每组分数的分子和分母:(1)从左往右看,是按照什么规律变化的?(2)从右往左看,又是按照什么规律变化的?让学生带着上面的思考题,看一看,想一想,议一议,再翻开教科书看看书上是怎么说的。2集体讨论,归纳性质。(1)从左往右看,由3/4到6/8,分子、分母是怎么变化的?引导学生回答出:把3/4的分子、分母都乘以2,就得到6/8。原来把单位“1”平均分成4份,表示这样的3份,现在把分的份数和表示份数都扩大2倍,就得到6/8。板书: 3/4=32/42=6/8(2)3/4是怎样变化成9/12的呢? 3/4=3/4=9/12怎么填?学生回答后填空。(3)引导口述:3/4的分子、分母都乘以2,得到6/8,分数的大小不变。(4)在其它几组分数中,分子、分母的变化规律怎样?几名学生回答后,要求学生试着归纳变化规律:分数的分子和分母都乘以相同的数,分数的大小不变。(板书:都乘以相同的数 )(5)从右往左看,分数的分子和分母又是按照什么规律变化的?通过分析比较每组分数的分子和分母,得出:分数的分子和分母都乘以相同的数,分数的大小不变。(板书: 都乘以)(6)引导思考:都乘以、都除以两个“都”字,去掉一个怎么改?(去掉第二“都”字,换成“或者”)再对照教科书中的分数基本性质,让学生说出少了什么?(少了“零除外”)讨论:为什么性质中要规定“零除外”?(板书: 零除外)(7)齐读分数的基本性质。先让学生找出性质中关键的字、词,如“都”、“相同的数”、“零除外”等。然后要求关键的字词要重读。师生共同读出黑板上板书的分数基本性质。 新知识力求让学生主动探索,逐步获取。“猴王分饼”和分析班级学生人数得出的三组相等的分数为学生探索新知提供材料,出示的思考题是学生探求新知、独立思考的指南,教师环紧扣的提问以及引导学生逐步展开的充分的讨论,帮助学生一步步走向结论。3出示例2:把1/2和10/24化成分母是12而大小不变的分数。思考:要把1/2和10/24化成分母是12而大小不变的分数,分子怎么不变?变化的依据是什么?4讨论:猴王运用什么规律来分饼的?如果小猴子要四块,猴王怎么分才公平呢?如果要五块呢? 得出性质后,再让学生说出猴王的想法,并回答如果小猴子要四块,猴王怎么办?既前后照应,又让学生在轻松愉快的帮猴王想办法的过程中,运用新知解决实际问题。5质疑:让学生看看课本和板书,回顾刚才学习的过程,提出疑问和见解,师生答疑。
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 六一活动忆童年活动方案
- 六一活动游街活动方案
- 六一活动踢球活动方案
- 六一游园手工活动方案
- 六一玩具团队活动方案
- 六一结对活动方案
- 六一节团委活动方案
- 六一节景区活动方案
- 六一葵花义卖活动方案
- 医生的考试试题及答案
- 2022年长春中医药大学辅导员招聘考试笔试试题及答案解析
- 企业家刑事法律风险及其防范(课件)
- 实用文档2021近四年小米公司财务报表分析
- 部编版小学道德与法治三年级下册期末质量检测试卷【含答案】5套
- 立式圆筒形储罐罐底真空试验记录
- 小学生劳动教育评价细则
- 民法典案例解读PPT
- 质 量 管 理 体 系 认 证审核报告(模板)
- 肿瘤科新护士入科培训和护理常规
- 第4章 颌位(双语)
- 塔吊负荷试验方案
评论
0/150
提交评论