



免费预览已结束,剩余1页可下载查看
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
第四章 第三节 平面向量的数量积及平面向量的应用一、选择题1若向量a,b,c满足ab且ac,则c(a2b)()a4 b3c2 d02若向量a(1,2),b(1,1),则2ab与ab的夹角等于()a b.c. d.3已知a(1,2),b(x,4)且ab10,则|ab|()a10 b10c d.4若a,b,c均为单位向量,且ab0,(ac)(bc)0,则|abc|的最大值为()a.1 b1c. d25已知a与b均为单位向量,其夹角为,有下列四个命题p1:|ab|10,)p2:|ab|1(,p3:|ab|10,)p4:|ab|1(,其中的真命题是()ap1,p4 bp1,p3cp2,p3 dp2,p46已知|a|2|b|0,且关于x的函数f(x)x3|a|x2abx在r上有极值,则a与b的夹角范围为()a(0,) b(,c(, d(,二、填空题7已知两个单位向量e1,e2的夹角为,若向量b1e12e2,b23e14e2,则b1b2_.8已知a与b为两个不共线的单位向量,k为实数,若向量ab与向量kab垂直,则k_.9已知|a|b|2,(a2b)(ab)2,则a与b的夹角为_三、解答题10已知a、b、c是同一平面内的三个向量,其中a(1,2)(1)若|c|2,且ca,求c的坐标;(2)若|b|,且a2b与2ab垂直,求a与b的夹角.11设a(1cos x,1sin x),b(1,0),c(1,2)(1)求证:(ab)(ac);(2)求|a|的最大值,并求此时x的值12在abc中,角a、b、c的对边分别为a,b,c.若k(kr)(1)判断abc的形状;(2)若k2,求b的值详解答案一、选择题1解析:由ab及ac,得bc,则c(a2b)ca2cb0.答案:d2解析:2ab(3,3),ab(0,3),则cos2ab,ab,故夹角为.答案:c3解析:因为ab10,所以x810,x2,所以ab(1,2),故|ab|.答案:d4解析:由已知条件,向量a,b,c都是单位向量可以求出,a21,b21,c21,由ab0,及(ac)(bc)0,可以知道,(ab)cc21,因为|abc|2a2b2c22ab2ac2bc,所以有|abc|232(acbc)1,故|abc|1.答案:b5解析:由|ab|1可得:a22abb21,|a|1,|b|1,ab.故0,)当0,)时,ab,|ab|2a22abb21,即|ab|1;由|ab|1可得:a22abb21,|a|1,|b|1,ab.故(,反之也成立答案:a6解析:f(x)x3|a|x2abx在r上有极值,即f(x)x2|a|xab0有两个不同的实数解,故|a|24ab0cosa,b,又a,b0,所以a,b(,答案:c二、填空题7解析:由题设知|e1|e2|1,且e1e2,所以b1b2(e12e2)(3e14e2)3e2e1e28e3286答案:68解析:ab与kab垂直,(ab)(kab)0,化简得(k1)(ab1)0,根据a、b向量不共线,且均为单位向量得ab10,得k10,即k1.答案:19解析:由|a|b|2,(a2b)(ab)2,得ab2,cosa,b,所以a,b60.答案:三、解答题10解:(1)设c(x,y),由ca和|c|2可得,或,c(2,4)或c(2,4)(2)(a2b)(2ab),(a2b)(2ab)0,即2a23ab2b20.2|a|23ab2|b|20.253ab20,ab.cos 1.0,.11解:(1)证明:ab(cos x,1sin x),ac(cos x,sin x1),(ab)(ac)(cos x,1sin x)(cos x,sin x1)cos2xsin2x10.(ab)(ac)(2)|a| 1.当sin(x)1,即x2k(kz)时,|a|有最大值1.12解:(1)cbcos a,bacos c,bccos aabcos c,根据正弦定理,得sin ccos asin acos c,即si
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年北京银行招聘考试(行政能力测验)历年参考题库含答案详解
- 2025广东佛山市南海区狮山高级中学招聘临聘教师3人笔试备考试题及答案解析
- 化工行业工伤预防管理规范
- 2.3.2长江 课件 商务星球版地理八年级上册
- 教师招聘之《小学教师招聘》能力检测附答案详解(典型题)
- 基于2025年的中医药康养旅游示范基地建设文化内涵研究报告
- 呼伦贝尔能源重化工工业园区谢尔塔拉产业区污水处理工程初步设计说明书带答案详解
- 教师招聘之《小学教师招聘》考前冲刺模拟题库提供答案解析含完整答案详解【易错题】
- 教师招聘之《小学教师招聘》通关检测卷及参考答案详解【b卷】
- 押题宝典教师招聘之《小学教师招聘》考试题库(模拟题)附答案详解
- 粮库业务知识培训课件
- 医师临床“三基”训练综合试卷(含答案)
- 2025至2030年中国综合能源服务市场竞争策略及行业投资潜力预测报告
- 土地要素保障课件教学
- 2025-2026粤教粤科版(2024)科学三年级上册教学设计(附目录)
- 广东省深圳市福田区2024-2025学年八年级上学期语文期中考试试卷(含答案)
- 福建省泉州市2025届高三上学期质量监测(一)历史试卷(含答案)
- 《西门子S7-1200PLC编程及应用教程》全套教学课件
- 《鸿蒙应用开发项目教程》全套教学课件
- 肠道准备课件
- 精神运动康复
评论
0/150
提交评论