




已阅读5页,还剩73页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
第九章平面解析几何 9 3圆的方程 内容索引 基础知识自主学习 题型分类深度剖析 思想与方法系列 思想方法感悟提高 练出高分 基础知识自主学习 1 圆的定义在平面内 到的距离等于的点的叫圆 2 确定一个圆最基本的要素是和 3 圆的标准方程 x a 2 y b 2 r2 r 0 其中为圆心 为半径 4 圆的一般方程x2 y2 dx ey f 0表示圆的充要条件是 其中圆心为 半径r 定长 集合 定点 圆心 半径 a b r d2 e2 4f 0 知识梳理 1 答案 5 确定圆的方程的方法和步骤确定圆的方程主要方法是待定系数法 大致步骤为 1 根据题意 选择标准方程或一般方程 2 根据条件列出关于a b r或d e f的方程组 3 解出a b r或d e f代入标准方程或一般方程 6 点与圆的位置关系点和圆的位置关系有三种 圆的标准方程 x a 2 y b 2 r2 点m x0 y0 1 点在圆上 2 点在圆外 3 点在圆内 x0 a 2 y0 b 2 r2 x0 a 2 y0 b 2 r2 x0 a 2 y0 b 2 r2 答案 判断下面结论是否正确 请在括号中打 或 1 确定圆的几何要素是圆心与半径 2 已知点a x1 y1 b x2 y2 则以ab为直径的圆的方程是 x x1 x x2 y y1 y y2 0 3 方程ax2 bxy cy2 dx ey f 0表示圆的充要条件是a c 0 b 0 d2 e2 4af 0 4 方程x2 2ax y2 0一定表示圆 答案 思考辨析 答案 1 教材改编 x2 y2 4x 6y 0的圆心坐标是 圆x2 y2 4x 6y 0的圆心为 2 3 2 3 考点自测 2 解析答案 1 2 3 4 5 2 方程x2 y2 ax 2ay 2a2 a 1 0表示圆 则a的取值范围是 解析由题意知a2 4a2 4 2a2 a 1 0 解析答案 1 2 3 4 5 3 2015 北京改编 圆心为 1 1 且过原点的圆的方程是 圆的方程为 x 1 2 y 1 2 2 x 1 2 y 1 2 2 解析答案 1 2 3 4 5 4 教材改编 圆c的圆心在x轴上 并且过点a 1 1 和b 1 3 则圆c的方程为 解析设圆心坐标为c a 0 点a 1 1 和b 1 3 在圆c上 ca cb 解得a 2 圆心为c 2 0 圆c的方程为 x 2 2 y2 10 x 2 2 y2 10 解析答案 1 2 3 4 5 5 2015 湖北 如图 已知圆c与x轴相切于点t 1 0 与y轴正半轴交于两点a b b在a的上方 且ab 2 1 圆c的标准方程为 解析由题意 设圆心c 1 r r为圆c的半径 解析答案 1 2 3 4 5 2 圆c在点b处的切线在x轴上的截距为 解析答案 1 2 3 4 5 解析答案 1 2 3 4 5 1 2 3 4 5 返回 题型分类深度剖析 例1根据下列条件 求圆的方程 1 经过p 2 4 q 3 1 两点 并且在x轴上截得的弦长等于6 题型一求圆的方程 解析答案 解设圆的方程为x2 y2 dx ey f 0 又令y 0 得x2 dx f 0 设x1 x2是方程 的两根 由 x1 x2 6有d2 4f 36 由 解得d 2 e 4 f 8 或d 6 e 8 f 0 故所求圆的方程为x2 y2 2x 4y 8 0 或x2 y2 6x 8y 0 2 圆心在直线y 4x上 且与直线l x y 1 0相切于点p 3 2 解析答案 思维升华 解方法一如图 设圆心 x0 4x0 故圆的方程为 x 1 2 y 4 2 8 方法二设所求方程为 x x0 2 y y0 2 r2 解析答案 思维升华 因此所求圆的方程为 x 1 2 y 4 2 8 思维升华 思维升华 1 直接法 根据圆的几何性质 直接求出圆心坐标和半径 进而写出方程 2 待定系数法 若已知条件与圆心 a b 和半径r有关 则设圆的标准方程依据已知条件列出关于a b r的方程组 从而求出a b r的值 若已知条件没有明确给出圆心或半径 则选择圆的一般方程 依据已知条件列出关于d e f的方程组 进而求出d e f的值 1 2014 陕西 若圆c的半径为1 其圆心与点 1 0 关于直线y x对称 则圆c的标准方程为 解析由题意知圆c的圆心为 0 1 半径为1 所以圆c的标准方程为x2 y 1 2 1 x2 y 1 2 1 跟踪训练1 解析答案 2 过点a 4 1 的圆c与直线x y 1 0相切于点b 2 1 则圆c的方程为 解析由已知kab 0 所以ab的中垂线方程为x 3 过b点且垂直于直线x y 1 0的直线方程为y 1 x 2 即x y 3 0 所以圆心坐标为 3 0 所以圆c的方程为 x 3 2 y2 2 x 3 2 y2 2 解析答案 命题点1斜率型最值问题 题型二与圆有关的最值问题 解析答案 则圆心 2 0 到直线y kx的距离为半径时直线与圆相切 斜率取得最大 最小值 解析答案 命题点2截距型最值问题 例3在例2条件下 求y x的最小值和最大值 解设y x b 则y x b 仅当直线y x b与圆切于第四象限时 截距b取最小值 解析答案 命题点3距离型最值问题 例4在例2条件下 求x2 y2的最大值和最小值 解x2 y2表示圆上的一点与原点距离的平方 由平面几何知识知 在原点和圆心连线与圆的两个交点处取得最大值和最小值 如图 解析答案 思维升华 思维升华 与圆有关的最值问题的常见类型及解题策略 1 与圆有关的长度或距离的最值问题的解法 一般根据长度或距离的几何意义 利用圆的几何性质数形结合求解 2 与圆上点 x y 有关代数式的最值的常见类型及解法 形如u 型的最值问题 可转化为过点 a b 和点 x y 的直线的斜率的最值问题 形如t ax by型的最值问题 可转化为动直线的截距的最值问题 形如 x a 2 y b 2型的最值问题 可转化为动点到定点 a b 的距离平方的最值问题 1 设p是圆 x 3 2 y 1 2 4上的动点 q是直线x 3上的动点 则pq的最小值为 解析pq的最小值为圆心到直线的距离减去半径 因为圆的圆心为 3 1 半径为2 所以pq的最小值d 3 3 2 4 4 跟踪训练2 解析答案 2 已知m为圆c x2 y2 4x 14y 45 0上任意一点 且点q 2 3 求mq的最大值和最小值 解由圆c x2 y2 4x 14y 45 0 可得 x 2 2 y 7 2 8 所以圆心c的坐标为 2 7 解析答案 设直线mq的方程为y 3 k x 2 解析答案 例5设定点m 3 4 动点n在圆x2 y2 4上运动 以om on为两边作平行四边形monp 求点p的轨迹 题型三与圆有关的轨迹问题 解析答案 思维升华 解如图所示 设p x y n x0 y0 解析答案 又n x 3 y 4 在圆上 故 x 3 2 y 4 2 4 因此所求轨迹为圆 x 3 2 y 4 2 4 思维升华 思维升华 求与圆有关的轨迹问题时 根据题设条件的不同常采用以下方法 直接法 直接根据题目提供的条件列出方程 定义法 根据圆 直线等定义列方程 几何法 利用圆的几何性质列方程 代入法 找到要求点与已知点的关系 代入已知点满足的关系式等 已知圆x2 y2 4上一定点a 2 0 b 1 1 为圆内一点 p q为圆上的动点 1 求线段ap中点的轨迹方程 解设ap的中点为m x y 由中点坐标公式可知 p点坐标为 2x 2 2y 因为p点在圆x2 y2 4上 所以 2x 2 2 2y 2 4 故线段ap中点的轨迹方程为 x 1 2 y2 1 跟踪训练3 解析答案 2 若 pbq 90 求线段pq中点的轨迹方程 解设pq的中点为n x y 连结bn 在rt pbq中 pn bn 设o为坐标原点 连结on 则on pq 所以op2 on2 pn2 on2 bn2 所以x2 y2 x 1 2 y 1 2 4 故线段pq中点的轨迹方程为x2 y2 x y 1 0 解析答案 返回 思想与方法系列 典例在平面直角坐标系xoy中 曲线y x2 6x 1与坐标轴的交点都在圆c上 求圆c的方程 思维点拨本题可采用两种方法解答 即代数法和几何法 19 利用几何性质巧设方程求半径 思想与方法系列 温馨提醒 巧妙解法 解析答案 思维点拨 返回 规范解答解一般解法 代数法 曲线y x2 6x 1与y轴的交点为 0 1 故圆的方程是x2 y2 6x 2y 1 0 设圆的方程是x2 y2 dx ey f 0 d2 e2 4f 0 温馨提醒 巧妙解法 所以圆c的方程为 x 3 2 y 1 2 9 温馨提醒 返回 1 一般解法 代数法 可以求出曲线y x2 6x 1与坐标轴的三个交点 设圆的方程为一般式 代入点的坐标求解析式 2 巧妙解法 几何法 利用圆的性质 知道圆心一定在圆上两点连线的垂直平分线上 从而设圆的方程为标准式 简化计算 显然几何法比代数法的计算量小 因此平时训练多采用几何法解题 温馨提醒 思想方法感悟提高 1 确定一个圆的方程 需要三个独立条件 选形式 定参数 是求圆的方程的基本方法 是指根据题设条件恰当选择圆的方程的形式 进而确定其中的三个参数 2 解答圆的问题 应注意数形结合 充分运用圆的几何性质 简化运算 方法与技巧 1 求圆的方程需要三个独立条件 所以不论是设哪一种圆的方程都要列出系数的三个独立方程 2 过圆外一定点 求圆的切线 应该有两个结果 若只求出一个结果 应该考虑切线斜率不存在的情况 失误与防范 返回 练出高分 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 1 已知点a 1 1 b 1 1 则以线段ab为直径的圆的方程是 解析ab的中点坐标为 0 0 圆的方程为x2 y2 2 x2 y2 2 解析答案 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 2 设圆的方程是x2 y2 2ax 2y a 1 2 0 若0 a 1 则原点与圆的位置关系是 解析将圆的一般方程化成标准方程为 x a 2 y 1 2 2a 因为0 a 1 所以 0 a 2 0 1 2 2a a 1 2 0 所以原点在圆外 原点在圆外 解析答案 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 解析答案 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 所以圆m的方程为 x 1 2 y2 4 答案 x 1 2 y2 4 解析由已知 可设圆m的圆心坐标为 a 0 a 2 半径为r 4 点p 4 2 与圆x2 y2 4上任一点连线的中点的轨迹方程是 解析设圆上任一点坐标为 x0 y0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 x 2 2 y 1 2 1 解析答案 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 解析答案 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 又圆与直线2x y 1 0相切 解析答案 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 所以圆心坐标为 1 2 则所求圆的方程为 x 1 2 y 2 2 5 答案 x 1 2 y 2 2 5 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 6 若圆c经过坐标原点和点 4 0 且与直线y 1相切 则圆c的方程是 解析答案 7 2015 江苏 在平面直角坐标系xoy中 以点 1 0 为圆心且与直线mx y 2m 1 0 m r 相切的所有圆中 半径最大的圆的标准方程为 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 解析答案 解析直线mx y 2m 1 0恒过定点 2 1 故所求圆的标准方程为 x 1 2 y2 2 x 1 2 y2 2 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 8 2014 湖北 已知圆o x2 y2 1和点a 2 0 若定点b b 0 b 2 和常数 满足 对圆o上任意一点m 都有mb ma 则 1 b 解析答案 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 解析因为点m为圆o上任意一点 所以不妨取圆o与x轴的两个交点 1 0 和 1 0 当m点取 1 0 时 由mb ma 得 b 1 当m点取 1 0 时 由mb ma 得 b 1 3 消去 得 b 1 3 b 1 两边平方 化简得2b2 5b 2 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 2 解析答案 9 一圆经过a 4 2 b 1 3 两点 且在两坐标轴上的四个截距的和为2 求此圆的方程 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 解析答案 解设所求圆的方程为x2 y2 dx ey f 0 令y 0 得x2 dx f 0 所以x1 x2 d 令x 0 得y2 ey f 0 所以y1 y2 e 由题意知 d e 2 即d e 2 0 又因为圆过点a b 所以16 4 4d 2e f 0 1 9 d 3e f 0 解 组成的方程组得d 2 e 0 f 12 故所求圆的方程为x2 y2 2x 12 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 解设p x y 圆p的半径为r 则y2 2 r2 x2 3 r2 y2 2 x2 3 即y2 x2 1 p点的轨迹方程为y2 x2 1 解析答案 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 解析答案 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 解设p的坐标为 x0 y0 y0 x0 1 即y0 x0 1 解析答案 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 圆p的方程为x2 y 1 2 3 圆p的方程为x2 y 1 2 3 综上所述 圆p的方程为x2 y 1 2 3 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 x 2 2 y 1 2 4 解析答案 12 设p为直线3x 4y 3 0上的动点 过点p作圆c x2 y2 2x 2y 1 0的两条切线 切点分别为a b 则四边形pacb的面积的最小值为 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 解析依题意 圆c x 1 2 y 1 2 1的圆心是点c 1 1 半径是1 解析答案 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 13 若圆x2 y 1 2 1上任意一点 x y 都使不等式x y m 0恒成立 则实数m的取值范围是 解析答案 解析据题意圆x2 y 1 2 1上所有的点都在直线x y m 0的右上方
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年河南省周口市国家公务员公共基础知识预测试题含答案
- 摩托漂移基础知识培训课件
- 摆钟的工作原理
- 微机接口技术试题及答案
- 2025配偶间房产互赠协议书
- 2025年上海市房屋租赁代理合同标准版样本
- 2025四川省房屋租赁合同模板
- 2025年春季部编版初中数学教学设计八年级下册第1课时 正比例函数的概念
- 2025合同风险控制:融资租赁业务中咨询服务合同纠纷
- 2025成都劳动合同书样本
- 税种知识培训课件图片
- 产品开发项目管理制度
- 液氧站安全管理制度
- 水洗泥项目可行性研究报告模板及范文
- 2025年广东省康复产业蓝皮书-前瞻产业研究院
- 2025至2030年中国中间相炭微球行业市场运行格局及产业需求研判报告
- 2025至2030年中国汽车空调过滤器行业市场现状分析及前景战略研判报告
- 2025年陕西、山西、宁夏、青海高考化学真题+解析(参考版)
- 【课件】《合并同类项》说课课件++2024-2025学年人教版数学七年级上册
- 2021年12月大学英语四级考试真题及答案(第1套)
- 【课件】新高三启动主题班会:启航高三逐梦未来
评论
0/150
提交评论