




已阅读5页,还剩18页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
解析几何专题复习一、求曲线方程(1)直译法1、高8cm和4cm的两根旗杆笔直地竖在水平地面上,且相距10cm,则地面上观察两旗杆顶端仰角相等的点的轨迹为( A )A、圆 B、椭圆 C、双曲线 D、抛物线2、已知椭圆C的中心为直角坐标系xOy的原点,焦点在x轴上,它的一个顶点到两个焦点的距离分别是7和1.()求椭圆C的方程;()若P为椭圆C上的动点,M为过P且垂直于x轴的直线上的点,=,求点M的轨迹方程,并说明轨迹是什么曲线。 解:()设椭圆长半轴长及半焦距分别为,由已知得, 所以椭圆的标准方程为 ()设,其中。由已知及点在椭圆上可得。整理得,其中。(i)时。化简得 所以点的轨迹方程为,轨迹是两条平行于轴的线段。(ii)时,方程变形为,其中当时,点的轨迹为中心在原点、实轴在轴上的双曲线满足的部分。当时,点的轨迹为中心在原点、长轴在轴上的椭圆满足的部分;当时,点的轨迹为中心在原点、长轴在轴上的椭圆;3、设,在平面直角坐标系中,已知向量,向量,动点的轨迹为E.求轨迹E的方程,并说明该方程所表示曲线的形状;解:(1)因为,所以, 即.当m=0时,方程表示两直线,方程为;当时, 方程表示的是圆当且时,方程表示的是椭圆; 当时,方程表示的是双曲线.(2)定义法(待定系数法)1、某中心接到其正东、正西、正北方向三个观测点的报告:正西、正北两个观测点同时听到一声巨响,正东观测点听到巨响的时间比其他两个观测点晚,已知各观测点到中心的距离都是,试确定该巨响的位置。(假定当时声音传播的速度为,各相关点均在同一平面上)解:如图,解:以接报中心为原点O,正东、正北方向为x轴、y轴正向,建立直角坐标系.设A、B、C分别是西、东、北观测点,则A(1020,0),B(1020,0),C(0,1020)设P(x,y)为巨响为生点,由A、C同时听到巨响声,得|PA|=|PB|,故P在AC的垂直平分线PO上,PO的方程为y=x,因B点比A点晚4s听到爆炸声,故|PB| |PA|=3404=1360由双曲线定义知P点在以A、B为焦点的双曲线上,依题意得a=680, c=1020,用y=x代入上式,得,|PB|PA|,答:巨响发生在接报中心的西偏北450距中心处.2、已知椭圆的离心率为,直线与以原点为圆心、以椭圆C1的短半轴长为半径的圆相切。(1)求椭圆的C1的方程;(2)设椭圆的C1的左焦点为F1, 右焦点为F,直线l1过点F1且垂直于椭圆的长轴,动直线l2垂直l1于点P,线段PF2的垂直平分线叫l2于点M,求点M的轨迹C2的方程。练习:1、已知圆C的圆心与点关于直线对称直线与圆C相交于两点,且,则圆C的方程为2、设椭圆(,)的右焦点与抛物线的焦点相同,离心率为,则此椭圆的方程为( B )(A) (B) (C) (D)3、已知、是椭圆(0)的两个焦点,为椭圆上一点,且.若的面积为9,则= 3 【解析】依题意,有,可得4c2364a2,即a2c29,故有b3。4、设椭圆C1的离心率为,焦点在x轴上且长轴长为26.若曲线C2上的点到椭圆C1的两个焦点的距离的差的绝对值等于8,则曲线C2的标准方程为( A )(A) (B) (C) (D)(3)相关点法(转移法)1、已知曲线与直线交于两点和,且记曲线在点和点之间那一段与线段所围成的平面区域(含边界)为设点是上的任一点,且点与点和点均不重合若点是线段的中点,试求线段的中点的轨迹方程;解:联立,可得,故线段的中点,设中点,从而有,解得, 因点在曲线上, ,整理得,又,即 线段的中点的轨迹方程为.(4)参数法1、设椭圆过点,且左焦点为()求椭圆的方程;()当过点的动直线与椭圆相交与两不同点时,在线段上取点,满足,证明:点总在某定直线上解 (1)由题意: ,解得,所求椭圆方程为 (2) 设点Q、A、B的坐标分别为。由题设知均不为零,记,则且又A,P,B,Q四点共线,从而于是 , , 从而 ,(1) ,(2)又点A、B在椭圆C上,即 (1)+(2)2并结合(3),(4)得即点总在定直线上(5)线锥关系1、设已知抛物线C的顶点在坐标原点,焦点为F(1,0),直线l与抛物线C相交于A,B两点。若AB的中点为(2,2),则直线的方程为_.解析:抛物线的方程为,2、设斜率为2的直线过抛物线的焦点F,且和轴交于点A,若OAF(O为坐标原点)的面积为4,则抛物线方程为( ). A. B. C. D. 【解析】: 抛物线的焦点F坐标为,则直线的方程为,它与轴的交点为A,所以OAF的面积为,解得.所以抛物线方程为,故选B. w.3、设直线与椭圆相交于两点,又与双曲线相交于C、D两点,三等分线段,求直线的方程。解:首先讨论l不与x轴垂直时的情况,设直线l的方程为y=kx+b,如图所示,l与椭圆、双曲线的交点为:依题意有,由若,则与双曲线最多只有一个交点,不合题意,故由故l的方程为(ii)当b=0时,由(1)得由故l的方程为 再讨论l与x轴垂直的情况.设直线l的方程为x=c,分别代入椭圆和双曲线方程可解得,综上所述,故l的方程为、和4、已知椭圆的离心率为,过右焦点F的直线与相交于、两点,当的斜率为1时,坐标原点到的距离为 。 (I)求,的值;(II)上是否存在点P,使得当绕F转到某一位置时,有成立?若存在,求出所有的P的坐标与的方程;若不存在,说明理由。解:(I)设,直线,由坐标原点到的距离为 则,解得 .又.(II)由(I)知椭圆的方程为.设、由题意知的斜率为一定不为0,故不妨设 代入椭圆的方程中整理得,显然。由韦达定理有:.假设存在点P,使成立,则其充要条件为:点,点P在椭圆上,即。整理得。 又在椭圆上,即.故将及代入解得,=,即.当;当.二、圆锥曲线的性质1、若直线被两平行线所截得的线段的长为,则的倾斜角可以是 其中正确答案的序号是 .(写出所有正确答案的序号)解:两平行线间的距离为,由图知直线与的夹角为,的倾斜角为,所以直线的倾斜角等于或。故填写或2、若圆与圆(a0)的公共弦的长为,则_ 解析:由知的半径为,由图可知解之得3、设双曲线的虚轴长为2,焦距为,则双曲线的渐近线方程为( C )A B C D【解析】由已知得到,因为双曲线的焦点在x轴上,故渐近线方程为4、 已知双曲线的左右焦点分别为,其一条渐近线方程为,点在该双曲线上,则=( C )A. B. C .0 D. 4 解析:根据双曲线渐近线方程可求出双曲线方程,则左、右焦点坐标分别为,再将点代入方程可求出,则可得,故选C。5、设双曲线(a0,b0)的渐近线与抛物线y=x2 +1相切,则该双曲线的离心率等于( C )(A) (B)2 (C) (D) 解:设切点,则切线的斜率为.由题意有又解得: . 6、双曲线-=1的焦点到渐近线的距离为( A )(A) (B)2 (C) (D)1解析:双曲线-=1的焦点(4,0)到渐近线的距离为,选A7、过双曲线的右顶点作斜率为的直线,该直线与双曲线的两条渐近线的交点分别为若,则双曲线的离心率是 ( C ) 21世纪教育网 A B C D【解析】对于,则直线方程为,直线与两渐近线的交点为B,C,则有,因8、已知直线与抛物线C:相交A、B两点,F为C的焦点。若,则k=(D)(A) (B) (C) (D)解析:本题考查抛物线的第二定义,由直线方程知直线过定点即抛物线焦点(2,0),由及第二定义知联立方程用根与系数关系可求k=。9、过椭圆()的左焦点作轴的垂线交椭圆于点,为右焦点,若,则椭圆的离心率为(B) A B C D 21世纪教育网 【解析】因为,再由有从而可得,10、设抛物线=2x的焦点为F,过点M(,0)的直线与抛物线相交于A,B两点,与抛物线的准线相交于C,=2,则BCF与ACF的面积之比=( A )(A) (B) (C) (D) 【考点定位】本小题考查抛物线的性质、三点共线的坐标关系,和综合运算数学的能力,中档题。解析:由题知,又由A、B、M三点共线有即,故, ,故选择A。11、已知直线和直线,抛物线上一动点到直线和直线的距离之和的最小值是( )A.2 B.3 C. D. 【考点定位】本小题考查抛物线的定义、点到直线的距离,综合题。解析:直线为抛物线的准线,由抛物线的定义知,P到的距离等于P到抛物线的焦点的距离,故本题化为在抛物线上找一个点使得到点和直线的距离之和最小,最小值为到直线的距离,即,故选择A。解析2:如下图,由题意可知12、已知、是椭圆的两个焦点,满足的点总在椭圆内部,则椭圆离心率的取值范围是( C )A B C D13、设,则双曲线的离心率的取值范围是( B )ABCD14、以知F是双曲线的左焦点,是双曲线右支上的动点,则的最小值为 9 【解析】注意到P点在双曲线的两只之间,且双曲线右焦点为F(4,0), 于是由双曲线性质|PF|PF|2a4 而|PA|PF|AF|5 两式相加得|PF|PA|9,当且仅当A、P、F三点共线时等号成立.三、圆锥曲线的综合应用(1)求值与最值1、设椭圆中心在坐标原点,是它的两个顶点,直线与AB相交于点D,与椭圆相交于E、F两点()若,求的值;()求四边形面积的最大值()解:依题设得椭圆的方程为,直线的方程分别为,2分如图,设,其中,DFByxAOE且满足方程,故由知,得;由在上知,得所以,化简得,解得或6分()解法一:根据点到直线的距离公式和式知,点到的距离分别为,9分又,所以四边形的面积为,当,即当时,上式取等号所以的最大值为12分解法二:由题设,设,由得,故四边形的面积为9分,当时,上式取等号所以的最大值为12分(2)求范围2、如图,在以点为圆心,为直径的半圆中,是半圆弧上一点,曲线是满足为定值的动点的轨迹,且曲线过点.()建立适当的平面直角坐标系,求曲线的方程;()设过点的直线l与曲线相交于不同的两点、.若的面积不小于,求直线斜率的取值范围.()解法1:以O为原点,AB、OD所在直线分别为x轴、y轴,建立平面直角坐标系,则A(-2,0),B(2,0),D(0,2),P(),依题意得MA-MB=PA-PBAB4.曲线C是以原点为中心,A、B为焦点的双曲线.设实平轴长为a,虚半轴长为b,半焦距为c,则c2,2a2,a2=2,b2=c2-a2=2.曲线C的方程为.解法2:同解法1建立平面直角坐标系,则依题意可得MA-MB=PA-PBAB4.曲线C是以原点为中心,A、B为焦点的双曲线.设双曲线的方程为0,b0).则由 解得a2=b2=2,曲线C的方程为()解法1:依题意,可设直线l的方程为ykx+2,代入双曲线C的方程并整理得(1-k2)x2-4kx-6=0.直线l与双曲线C相交于不同的两点E、F, k(-,-1)(-1,1)(1,).设E(x,y),F(x2,y2),则由式得x1+x2=,于是EF而原点O到直线l的距离d,SDEF=若OEF面积不小于2,即SOEF,则有 综合、知,直线l的斜率的取值范围为-,-1(1-,1) (1, ).解法2:依题意,可设直线l的方程为ykx+2,代入双曲线C的方程并整理,得(1-k2)x2-4kx-6=0.直线l与双曲线C相交于不同的两点E、F, .k(-,-1)(-1,1)(1,).设E(x1,y1),F(x2,y2),则由式得x1-x2= 当E、F在同一去上时(如图1所示),SOEF当E、F在不同支上时(如图2所示).SODE=综上得SOEF于是由OD2及式,得SOEF=若OEF面积不小于2 综合、知,直线l的斜率的取值范围为-,-1(-1,1)(1,).(3)探索性问题3、如图,设抛物线方程为x2=2py(p0),M为 直线y=-2p上任意一点,过M引抛物线的切线,切点分别为A,B.()求证:A,M,B三点的横坐标成等差数列;()已知当M点的坐标为(2,-2p)时,求此时抛物线的方程;()是否存在点M,使得点C关于直线AB的对称点D在抛物线上,其中,点C满足(O为坐标原点).若存在,求出所有适合题意的点M的坐标;若不存在,请说明理由.()证明:由题意设由得,则所以因此直线MA的方程为直线MB的方程为所以由、得因此,即所以A、M、B三点的横坐标成等差数列.()解:由()知,当x0=2时, 将其代入、并整理得:所以x1、x2是方程的两根,因此又所以由弦长公式得又,所以p=1或p=2,因此所求抛物线方程为或()解:设D(x3,y3),由题意得C(x1+ x2, y1+ y2), 则CD的中点坐标为设直线AB的方程为由点Q在直线AB上,并注意到点也在直线AB上,代入得若D(x3,y3)在抛物线上,则因此x3=0或x3=2x0. 即D(0,0)或(1)当x0=0时,则,此时,点M(0,-2p)适合题意.(2)当,对于D(0,0),此时又ABCD,所以即矛盾.对于因为此时直线CD平行于y轴,又所以直线AB与直线CD不垂直,与题设矛
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 上市公司员工购车补贴与股权激励结合合同
- 电动汽车充电桩项目投资合作与分红协议
- 建筑工程退款及合同履行协议范本
- 城市建设研学合同书:城市规划与发展趋势研究
- 历史专业考试题及答案
- 维修专业面试题目及答案
- 俄语专业四级试题及答案
- 英语专业知识试题及答案
- 消防安全治理培训课件
- 传送带项目汇报
- 2023年二级建造师考试《矿业工程管理与实物》真题及答案
- 消毒供应室课件
- 成都理工大学工程技术学院《工程地质B》2023-2024学年第二学期期末试卷
- 企业员工音乐培训计划
- 中学七年级综合实践课件
- 2025年房东租房合同模板电子版
- 《法律职业伦理》课件-第二讲 法官职业伦理
- 2024企业管理制度与企业文化融合合同3篇
- 第五讲铸牢中华民族共同体意识-2024年形势与政策
- 医学伦理学全套课件
- 车用驱动电机原理与控制基础(第2版)课件:三相交流绕组及其磁场
评论
0/150
提交评论