陈壮锐-76-77-A38.doc_第1页
陈壮锐-76-77-A38.doc_第2页
陈壮锐-76-77-A38.doc_第3页
陈壮锐-76-77-A38.doc_第4页
免费预览已结束,剩余1页可下载查看

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

CHAPTER 3 The Semiconductor in EquilibriumOr The electron concentration is given by Or CommentThe probability of a state being occupied in the conduction band can be quite small,but the thermal equilibrium value of electron concentration can be a reasonable value since the density of States large.Exercise ProblemEX3.1 Calculate the thermal equilibrium electron concentration in silicon at T=300K for the case when the Fermi level is 0.25eV below the conduction-band energy,. The thermal-equilibrium concentration of holes in the valence band is found by integrating Equation (3.2)over the range of energies in the valence-band energy,orDensity of holes. (3.12)Where is the maximum energy of the valence band and is the minimum energy of the valence band .However,the function approaches zero very quickly as the energy decreases,as seen in Figure 3.1d,so we may let we can note that (3.13a)For energy states in the valence band,.IF(kT)(the Fermi function is still assumed to be within bandgap),then we have a slightly different form of the Boltzmann approximation.Equation(3.13a)can be written as (3.13b)Applying the boltzmann approximation of Equation (3.12), we find the thermal-equilibrium concentration of holes in the valence band is Where the lower of integration is taken as minus infinity of the bottom of the valence band.The exponential term decays fast enough so that this approximation is valid. Equation(3.14)can be solved more easily by again making a change of variable If we let Then Equation (3.14)becomes Where the negative sign comes from the differential dE=.Note that the lower limit ofbecomes +when If we change the of integration,we introduce another minus sign. From Equation(3.8)Equation (3.16)becomes We may define a parameter as Which is called the effective density of states function in the valence band.The thermal-equilibrium concentration of holes in the valence band canNow be written as The magnitude of is also on the order of at T=300K for most semiconductor.OBJECTIVE Calculate the probability that energy state in the valence band at is empty of an electron and calculate the thermal-equilibrium hole concentration in silicon at T=350K. Assume the energy is 0.25eV above the valence-band energy.The value of for silicon at T=300K is . 第三章 半导体中的平衡电子浓度可以表示为OR 评论在传导带被占领的状态的可能性可以是相当小的,但是电子集中的热平衡价值可以是合理的价值从大密度状态。运动问题:EX3.1计算在硅的热平衡电子集中在案件的T=300K,当费密水平是0.25eV在传导带能量之下时。孔的热平衡价带中的浓度发现,结合对在价带能量的能量范围或者是孔的密度。方程(3.2)(3.12)的最大能源在哪里的,是价带能量最小价带。然而,很快接近零功能的精力减少,例如图3.1d,所以从我们可可以看到对于在价带能级,如果kT费米函数一直假设为内带隙。然后我们稍微不同形式的的玻尔兹曼的近似而已。方程(3.13a)可以写成:(3.13b)运用玻尔兹曼近似方程(第3.12章),我们发现了孔热平衡价带中的浓度是:在低的整合是减去了无限底部的价带。该指数足够快,使这一近似是有效的长期衰变。方程(3.14)又可以更容易解决的变量的变化,如果我们知道 然后方程(3.14)为: 那里负号来自有差别的dE=请注意,下限变成+时,如果我们整合的变化,我们介绍另一个减号。从公式(3.8)式(3.16)变为: 我们可以定义一个参数

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论