



全文预览已结束
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2.2直接证明与间接证明(教学设计)(3)2. 2 .2 反证法教学目标:知识与技能目标:结合已经学过的数学实例,了解间接证明的一种基本方法反证法;了解反证法的思考过程、特点。过程与方法目标:多让学生举命题的例子,培养他们的辨析能力;以及培养他们的分析问题和解决问题的能力;情感、态度与价值观目标:通过学生的参与,激发学生学习数学的兴趣。 教学重点:了解反证法的思考过程、特点 教学难点:反证法的思考过程、特点 教学过程: 一、复习回顾:1、综合法的特点是:由因导果,即由已知条件出发,利用已知的数学定理、性质和公式,推出结论的一种证明方法。2、分析法的特点是:执果索因,即寻找使结论成立的条件。3、分析法的书写格式: 要证明命题B为真, 只需要证明命题为真,从而有 这只需要证明命题为真,从而又有 这只需要证明命题A为真而已知A为真,故命题B必为真 二、创设情境、新课引入: 如果用直接证明的方法证明比较困难时,那我们就采用间接证明方法反证法, 三、师生互动、新课讲解:1、反证法(1)定义:反证法是一种间接证法,它是先提出一个与命题的结论相反的假设,然后,从这个假设出发,经过正确的推理,导致矛盾,从而否定相反的假设,达到肯定原命题正确的一种方法。一般地,假设原命题不成立(即在原命题的条件下,结论不成立),经过正确的推理,最后得出矛盾,因此说明假设错误,从而证明了原命题成立,这样的证明方法叫做反证法 ( reduction to absurdity ) .(2)分类反证法可以分为归谬反证法(结论的反面只有一种)与穷举反证法(结论的反面不只一种)。(3)证明步骤:用反证法证明一个命题的步骤,大体上分为:(1)反设;(2)归谬;(3)结论。(3)常用的反设(否定)(补集)反设是反证法的基础,为了正确地作出反设,掌握一些常用的互为否定的表述形式是有必要的,例如:是/不是;存在/不存在;平行于/不平行于;垂直于/不垂直于;等于/不等于;大(小)于/不大(小)于;都是/不都是;至少有一个/一个也没有;至少有n个/至多有(n一1)个;至多有一个/至少有两个;唯一/至少有两个。归谬是反证法的关键,导出矛盾的过程没有固定的模式,但必须从反设出发,否则推导将成为无源之水,无本之木。推理必须严谨。导出的矛盾有如下几种类型:与已知条件矛盾;与已知的公理、定义、定理、公式矛盾;与反设矛盾;自相矛盾。例1(课本P42例7)已知a0,证明x的方程ax=b有且只有一个根。分析: 证明:例2(课本P43例8)已知直线和平面,如果,且,求证。证明:因为, 所以经过直线a , b 确定一个平面。因为,而,所以与是两个不同的平面因为,且,所以. 下面用反证法证明直线a与平面没有公共点假设直线a 与平面有公共点,则,即点是直线 a 与b的公共点,这与矛盾所以 . 点评:线面平行的判定定理:如果不在一个平面内的一条直线和平面内的一条直线平行,那么这条直线和这个平面平行推理模式: 例3、求证:不是有理数分析:直接证明一个数是无理数比较困难,我们采用反证法假设不是无理数,那么它就是有理数我们知道,任一有理数都可以写成形如(互质, ”的形式下面我们看看能否由此推出矛盾证明:假设不是无理数,那么它就是有理数于是,存在互质的正整数,使得,从而有, 因此,所以 m 为偶数于是可设 ( k 是正整数),从而有,即所以n也为偶数这与 m , n 互质矛盾!由上述矛盾可知假设错误,从而是无理数正是的发现,使人们认识到在有理数之外,还有一类数与 1 是不可公度的,这就是无理数;从而引发了数学史上的第一次危机,大大推动了数学前进的步伐。例4、已知,求证:(且)证明:假设不大于,即或.a0,b0由(注:应由学生讨论回答上述步骤转化的目的是什么?)ab(推理利用了不等式的传递性).又由但这些都与已知条件,ab0相矛盾.成立.例5、设,求证证明:假设,则有,从而因为,所以,这与题设条件矛盾,所以,原不等式成立。一般来说,利用反证法证明不等式的第三步所称的矛盾结果,通常是指所推出的结果与已知公理、定义、定理或已知条件、已证不等式,以及与临时假定矛盾等各种情况。试根据上述两例,讨论寻找矛盾的手段、方法有什么特点? 课堂练习:(课本P43练习)四、课堂小结、巩固反思:反证法是一种间接证法,它是先提出一个与命题的结论相反的假设,然后,从这个假设出发,经过正确的推理,导致矛盾,从而否定相反的假设,达到肯定原命题正确的一种方法。反证法可以分为归谬反证法(结论的反面只有一种)与穷举反证法(结论的反面不只一种)。用反证法证明一个命题的步骤,大体上分为:(1)反设;(2)归谬;(3)结论。 反设是反证法的基础,为了正确地作出反设,掌握一些常用的互为否定的表述形式是有必要的,例如:是/不是;存在/不存在;平行于/不平行于;垂直于/不垂直于;等于/不等于;大(小)于/不大(小)于;都是/不都是;至少有一个/一个也没有;至少有n个/至多有(n一1)个;至多有一个/至少有两个;唯一/至少有两个。 归谬是反证法的关键,导出矛盾的过程没有固定的模式,但必须从反设出发,否则推导将成为无源之水,无本之木。推理必须严谨。导出的矛盾有如下几种类型:与已知条件矛盾;与已知的公理、定义、定理、公式矛盾;与反设矛盾;自相矛盾。五、布置作业:A组:1应用反证法推出矛盾的推导过程中要把下列哪些作为条件使用()结论相反判断,即假设 原命题的条件 公理、定理、定义等原结论ABC D解析:应是.故选C.答案:C2用反证法证明命题“三角形的内角至多有一个钝角”时,假设正确的是()A假设至少有一个钝角B假设至少有两个钝角C假设没有一个钝角D假设没有一个钝角或至少有两个钝角解析:至多有一个的否定是至少有两个,故选B.答案:B3. 用反证法证明命题“已知,则中至少有一个不 小 于0”反设正确的是 ( ) A.假设都不大于0 B.假设至多有一个大于0 C.假设都大于0 D.假设都小于0D 解析:反证法的应用是假设结论不成立,因此要设为“假设都小于0.4用反证法证明命题“若a2b20,则a,b全为0(a、b为实数)”,其反设为_解析:“a,b全为0”即是“a0且b0”,因此它的反设为“a0或b0”答案:a,b不全为05“任何三角形的外角都至少有两个钝角”的否定应是_解析:“任何三角形”的否定是“存在一个三角形”,“至少有两个”的否定是“最多有一个”答案:存在一个三角形,其外角最多有一个钝角B组:1、(课本P44习题2.2 A组 NO:3)2、求证是无理数. (提示:有理数可表示为)证:假设是有理数,则不妨设(m,n为互质正整数),从而:,可见m是3的倍数.设m=3p(p是正整数),则 ,可见n 也是3的倍数.这样,m, n就不是互质的正整数(矛盾). 不可能,是无理数.3、若x, y 0,且x + y 2,则和中至少有一个小于2反证法:设2,2 x, y 0,可
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 8.2.5 生物的变异 说课稿-2025-2026学年鲁科版(五四学制)生物八年级下册
- Chapter1 Study tours教学设计-2025-2026学年小学英语6B香港朗文版
- 第三节 DNA通过复制传递遗传信息教学设计-2025-2026学年高中生物浙科版2019必修2 遗传与进化-浙科版2019
- 十六 项脊轩志教学设计-2025-2026学年高中语文高一下册华东师大版
- 2025年中考数学试题分类汇编:圆的有关位置关系(9大考点51题) (第1期)解析版
- 2025年采购与供应链管理岗位职业技能资格知识考试题与答案
- 1.3地球的历史教学设计2023-2024学年高中地理人教版(2019)必修第一册
- 2025年体育学科专业知识教师招聘考试押题卷及答案(一)
- 一年级语文上册 第7单元 课文3 11 项链说课稿 新人教版
- 蓄水池防溺水知识培训课件
- 2025海南省老干部服务管理中心招聘事业编制人员6人(第1号)考试备考题库及答案解析
- 居民体重管理核心知识课件
- 2025年内江市总工会公开招聘工会社会工作者(14人)笔试模拟试题及答案解析
- 2025云南辅警笔试题目及答案
- 2025四川内江市总工会招聘工会社会工作者14人笔试备考试题及答案解析
- 2025-2026学年湘教版(2024)初中数学八年级上册教学计划及进度表
- 2025至2030中国公安行业发展趋势分析与未来投资战略咨询研究报告
- 2025互联网营销师三级理论考核试题及答案
- 2025年三支扶陕西试题及答案
- GB/T 45763-2025精细陶瓷陶瓷薄板室温弯曲强度试验方法三点弯曲或四点弯曲法
- 【MOOC】理解马克思-南京大学 中国大学慕课MOOC答案
评论
0/150
提交评论