毕业论文《电火花加工技术的研究》.doc_第1页
毕业论文《电火花加工技术的研究》.doc_第2页
毕业论文《电火花加工技术的研究》.doc_第3页
毕业论文《电火花加工技术的研究》.doc_第4页
毕业论文《电火花加工技术的研究》.doc_第5页
已阅读5页,还剩22页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

沧州职业技术学院毕业论文第一章 绪 论1.1电火花加工技术的的发展历程电火花加工是利用两极见脉冲放电时产生的电腐蚀现象,对材料进行加工的方法。早在十九世纪,人们就发现了电器开关的触点开闭时,因为放电,使接触部位烧蚀,造成接触面的损坏。这种放电引起的电极烧蚀现象叫做电腐蚀。起初,电腐蚀被认为是有害的,为减少和避免这种有害的电腐蚀,人们一直在研究电腐蚀产生的原因和防止的办法。当人们掌握了它的规律之后,便创造条件,转害为益,把电腐蚀用于生产中。研究结果表明,当两极产生放电的过程中,放电通道瞬时产生大量的热,足以使电极材料表面局部熔化或汽化,并在一定条件下,熔化或汽化的部分能抛离电极表面,形成放电腐蚀的坑穴。二十世纪四十年代初,人们进一步认识到,在液体介质中进行重复性脉冲放电时,能够对导电材料进行尺寸加工,因此,创立了“电火花加工法”。电火花加工技术作为特种加工领域的重要技术之一,最早应用于二战时期折断丝锥取出时的加工。随着人类进入信息化时代,电加工技术取得了突飞猛进的发展,可控性更高,数字化程度更好。电火花加工技术经历了手动电火花加工、液压伺服、直流电机、步进电机、交流伺服电机等一系列过程。控制系统也越来越复杂,从单轴数控到3轴数控、再到多轴联动。20世纪90年代初期,3轴电火花机在国内还是空白,主要是从日本和瑞士引进。直到90年代中期,北京市电加工研究所才和日本沙迪克公司合作开始制造3轴电火花加工机,也可以说开始步入国内电火花加工机的真正快速发展轨道,后来在此基础上又生产研发了4轴4联动电火花加工机。以该合作为例,可以看出北京市电加工研究所的消化吸收再创新的道路大概经历了以下几个阶段:首先制造主机,也就是机械部分,相对较为简单;此后是数控系统部分,可以理解为引进;之后是整个电源,是消化阶段。经历这三个阶段之后是吸收,最后是再创新。对电火花加工而言电火花成形机下一步的发展空间在精密微细和特殊材料两个方面。特殊材料(如航空航天领域用的材料)专机,窄槽窄缝、异型腔的加工,精密模具等领域都是发展重点。在精加工方面,曾经有过高速铣要代替电火花的传言,现在证明这是不现实的。现在粗加工、大电流的火花机又有回头的趋势,在家电、汽车很多行业中应用。人类新开发出来的导电的特殊材料都可进行放电加工,而高速铣通常很难实现。精密微细加工比如喷丝板等微小型零件都离不开电火花加工;航空航天领域中很多零部件需要多轴联动电火花加工。我们国家在专用机型上有创新的能力,有很大的空间。1.2模具电火花的发展趋势 模具电火花加工技术正不断向精密化、自动化、智能化、高效化等方向发展。如今新型数控电火花机床层出不穷,如瑞士阿奇、瑞士夏米尔、日本沙迪克、日本牧野、日本三菱等机床在这方面技术都有了全面的提高。1.2.1精密化电火花加工的精密核心主要体现在对尺寸精度、仿形精度、表面质量的要求。时下数控电火花机床加工的精度已有全面提高,尺寸加工要求可达2-3m、底面拐角R值可小于0.03mm,最佳加工表面粗糙度可低于Ra0.3m。通过采用一系列先进加工技术和工艺方法,可达到镜面加工效果且能够成功地完成微型接插件、IC塑封、手机、CD盒等高精密模具部位的电火花加工。从总体来看,现代模具企业在先进数控电火花机床的应用上,还没能很好地挖掘出机床的精密加工性能。因此有必要全面推动已有数控加工技术的进一步发展,不断提高模具加工精度。1.2.2自动化目前最先进的数控电火花机床在配有电极库和标准电极夹具的情况下,只要在加工前将电极装入刀库,编制好加工程序,整个电火花加工过程便能日以赴继地自动运转,几乎无需人工操作。机床的自动化运转降低了操作人员的劳动强度、提高生产效率。但自动装置配件的价格比较昂贵,大多模具企业的数控电火花机床的配置并不齐全。数控电火花机床具备的自动测量找正、自动定位、多工件的连续加工等功能已较好地发挥了它的自动化性能。自动操作过程不需人工干预,可以提高加工精度、效率。普及机床的自动化程度是当前数控电火花机床行业的发展趋1.2.3智能化 智能控制技术的出现把数控电火花加工推向了新的发展高度。新型数控电火花机床采用了智能控制技术。专家系统是数控电火花机床智能化的重要体现,它的智能性体现在精确的检测技术和模糊控制技术两方面。专家系统采用人机对话方式,根据加工的条件、要求,合理输入设定值后便能自动创建加工程序,选用最佳加工条件组合来进行加工。在线自动监测、调整加工过程,实现加工过程的最优化控制。专家系统在检测加工条件时,只要输入加工形状、电极与工件材质、加工位置、目标粗糙度值、电极缩放量、摇动方式、锥度值等指标,就可自动推算并配置最佳加工条件。模糊控制技术是由计算机监测来判定电火花加工间隙的状态,在保持稳定电弧的范围内自动选择使加工效率达到最高的加工条件;自动监控加工过程,实现最稳定的加工过程的控制技术。专家系统智能技术的应用使机床操作更容易,对操作人员的技术水平要求更低。目前智能化技术不断地升级,使得智能控制技术的应用范围更加的广泛。随着市场对电加工要求的提升,智能化技术将获得更为广阔的发展空间。势之一。1.2.4高效化现代加工的要求为数控电火花加工技术提供了最佳的加工模式,即要求在保证加工精度的前提下大幅提高粗、精加工效率。如手机外壳、家电制品、电器用品、电子仪表等领域,都要求将大面积(例如100100mm)工件的放电时间大幅缩短,同时又要降低粗糙度。从原来的Ra0.8m改进到Ra0.25m,使放电后不必再进行手工抛光处理。这不但缩短了加工时间且省却后处理的麻烦,同时提升了模具品质,使用粉末加工设备可达到要求。另外减少辅助时间(如编程时间、电极与工件定位时间等),这就需要增强机床的自动编程功能,配置电极与工件定位的夹具、装置。若在大工件的粗加工中选用石墨电极材料也是提高加工效率的好方法。最佳的加工模式是企业扩大市场空间、提升市场竞争力的资本,其开发而成的新产品、新技术亦愈受欢迎。电火花加工是利用两极见脉冲放电时产生的电腐蚀现象,对材料进行加工的方法。早在十九世纪,人们就发现了电器开光的触点开闭时,以为放电,使接触部位烧蚀,造成接触面的损坏。这种放电引起的电极烧蚀现象叫做电腐蚀。起初,电腐蚀被认为是有害的,为减少和避免这种有害的电腐蚀,人们一直在研究电副食产生的原因和防止的办法。当人们掌握了它的规律之后,便创造条件,转害为益,把电腐蚀用于生产中。研究结果表明,当两极产生放电的过程中,放电通道瞬时产生大量的热,足以使电极材料表面局部熔化或汽化,并在一定条件下,熔化或汽化的部分能抛离电极表面,形成放电腐蚀的坑穴。二十世纪四十年代初,人们进一步认识到,在液体介质中进行重复性脉冲放电时,能够对导电材料进行尺寸加工,因此,创立了“电火花加工法”。电火花加工技术作为特种加工领域的重要技术之一,最早应用于二战时期折断丝锥取出时的加工。随着人类进入信息化时代,电加工技术取得了突飞猛进的发展,可控性更高,数字化程度更好。第二章 电火花加工基本原理电火花加工是利用浸在工作液中的两极间脉冲放电时产生的电蚀作用蚀除导电材料的特种加工方法,又称放电加工或电蚀加工,英文简称EDM。2.1 电火花加工的物理本质及特点2.1.1 电火花加工的物理本质电火花加工基于电火花腐蚀原理,是在工具电极与工件电极相互靠近时,极间形成脉冲性火花放电,在电火花通道中产生瞬时高温,使金属局部熔化,甚至气化,从而将金属蚀除下来。那么两电极表面的金属材料是如何被蚀除下来的呢?这一过程大致分为以下几个阶段(如图2-1所示):图2-1 电火花加工原理(1) 极间介质的电离、击穿,形成放电通道(如图2-1(a)所示)。工具电极与工件电极缓缓靠近,极间的电场强度增大,由于两电极的微观表面是凹凸不平的,因此在两极间距离最近的A、B处电场强度最大。工具电极与工件电极之间充满着液体介质,液体介质中不可避免地含有杂质及自由电子,它们在强大的电场作用下,形成了带负电的粒子和带正电的粒子,电场强度越大,带电粒子就越多,最终导致液体介质电离、击穿,形成放电通道。放电通道是由大量高速运动的带正电和带负电的粒子以及中性粒子组成的。由于通道截面很小,通道内因高温热膨胀形成的压力高达几万帕,高温高压的放电通道急速扩展,产生一个强烈的冲击波向四周传播。在放电的同时还伴随着光效应和声效应,这就形成了肉眼所能看到的电火花。(2) 电极材料的熔化、气化热膨胀(如图2-1(b)、(c)所示)。液体介质被电离、击穿,形成放电通道后,通道间带负电的粒子奔向正极,带正电的粒子奔向负极,粒子间相互撞击,产生大量的热能,使通道瞬间达到很高的温度。通道高温首先使工作液汽化,进而气化,然后高温向四周扩散,使两电极表面的金属材料开始熔化直至沸腾气化。气化后的工作液和金属蒸气瞬间体积猛增,形成了爆炸的特性。所以在观察电火花加工时,可以看到工件与工具电极间有冒烟现象,并听到轻微的爆炸声。(3) 电极材料的抛出(如图2-1(d)所示)。正负电极间产生的电火花现象,使放电通道产生高温高压。通道中心的压力最高,工作液和金属气化后不断向外膨胀,形成内外瞬间压力差,高压力处的熔融金属液体和蒸汽被排挤,抛出放电通道,大部分被抛入到工作液中。仔细观察电火花加工,可以看到桔红色的火花四溅,这就是被抛出的高温金属熔滴和碎屑。 (4) 极间介质的消电离(如图2-1(e)所示)。加工液流入放电间隙,将电蚀产物及残余的热量带走,并恢复绝缘状态。若电火花放电过程中产生的电蚀产物来不及排除和扩散,产生的热量将不能及时传出,使该处介质局部过热,局部过热的工作液高温分解、积炭,使加工无法继续进行,并烧坏电极。因此,为了保证电火花加工过程的正常进行,在两次放电之间必须有足够的时间间隔让电蚀产物充分排出,恢复放电通道的绝缘性,使工作液介质消电离。上述步骤(1)(4)在一秒内约数千次甚至数万次地往复式进行,即单个脉冲放电结束,经过一段时间间隔(即脉冲间隔)使工作液恢复绝缘后,第二个脉冲又作用到工具电极和工件上,又会在当时极间距离相对最近或绝缘强度最弱处击穿放电,蚀出另一个小凹坑。这样以相当高的频率连续不断地放电,工件不断地被蚀除,故工件加工表面将由无数个相互重叠的小凹坑组成(如图2-2所示)。所以电火花加工是大量的微小放电痕迹逐渐累积而成的去除金属的加工方式。图2-2 电火花表面局部放大图2.1.2 电火花加工、电火花线切割加工的特点1共同特点(1) 二者的加工原理相同,都是通过电火花放电产生的热来熔解去除金属的,所以二者加工材料的难易与材料的硬度无关,加工中不存在显著的机械切削力。(2) 二者的加工机理、生产率、表面粗糙度等工艺规律基本相似,可以加工硬质合金等一切导电材料。(3) 最小角部半径有限制。电火花加工中最小角部半径为加工间隙,线切割加工中最小角部半径为电极丝的半径加上加工间隙。 2不同特点(1) 从加工原理来看,电火花加工是将电极形状复制到工件上的一种工艺方法(如图2-3(a)所示)。在实际中可以加工通孔(穿孔加工)和盲孔(成型加工)(如图2-3(b)、(c)所示);而线切割加工是利用移动的细金属导线(铜丝或钼丝)做电极,对工件进行脉冲火花放电,切割成型的一种工艺方法,如图2-4所示。图2-3 电火花加工图2-4 线切割加工(2) 从产品形状角度看,电火花加工必须先用数控加工等方法加工出与产品形状相似的电极;线切割加工中产品的形状是通过工作台按给定的控制程序移动而合成的,只对工件进行轮廓图形加工,余料仍可利用。(3) 从电极角度看,电火花加工必须制作成型用的电极(一般用铜、石墨等材料制作而成);线切割加工用移动的细金属导线(铜丝或钼丝)做电极。(4) 从电极损耗角度看,电火花加工中电极相对静止,易损耗,故通常采用多个电极加工;而线切割加工中由于电极丝连续移动,使新的电极丝不断地补充和替换在电蚀加工区受到损耗的电极丝,避免了电极损耗对加工精度的影响。 (5) 从应用角度看,电火花加工可以加工通孔、盲孔,特别适宜加工形状复杂的塑料模具等零件的型腔以及刻文字、花纹等(如图2-5(a)所示);而线切割加工只能加工通孔,能方便地加工出小孔、形状复杂的窄缝及各种形状复杂的零件(如图2-5(b)所示)。(a) 电火花加工产品 (b) 线切割加工产品图2-5 加工产品实例2.2 电火花加工机床简介2.2.1 机床型号、规格、分类我国国标规定,电火花成型机床均用D71加上机床工作台面宽度的1/10表示。例如D7132中,D表示电加工成型机床(若该机床为数控电加工机床,则在D后加K,即DK);71表示电火花成型机床;32表示机床工作台的宽度为320 mm。在中国大陆外,电火花加工机床的型号没有采用统一标准,由各个生产企业自行确定,如日本沙迪克(Sodick)公司生产的A3R、A10R,瑞士夏米尔(Charmilles)技术公司的ROBOFORM20/30/35,台湾乔懋机电工业股份有限公司的JM322/430,北京阿奇工业电子有限公司的SF100等。电火花加工机床按其大小可分为小型(D7125以下)、中型(D7125D7163)和大型(D7163以上);按数控程度分为非数控、单轴数控和三轴数控。随着科学技术的进步,国外已经大批生产三坐标数控电火花机床,以及带有工具电极库、能按程序自动更换电极的电火花加工中心,我国的大部分电加工机床厂现在也正开始研制生产三坐标数控电火花加工机床。2.2.2 电火花加工机床结构电火花加工机床主要由机床本体、脉冲电源、自动进给调节系统、工作液过滤和循环系统、数控系统等部分组1. 机床本体机床本体主要由床身、立柱、主轴头及附件、工作台等部分组成,是用以实现工件和工具电极的装夹固定和运动的机械系统。床身、支柱、坐标工作台是电火花机床的骨架,起着支承、定位和便于操作的作用。因为电火花加工宏观作用力极小,所以对机械系统的强度无严格要求,但为了避免变形和保证精度,要求具有必要的刚度。主轴头下面装夹的电极是自动调节系统的执行机构,其质量的好坏将影响到进给系统的灵敏度及加工过程的稳定性,进而影响工件的加工精度。机床主轴头和工作台常有一些附件,如可调节工具电极角度的夹头、平动头、油杯等。本节主要介绍平动头。电火花加工时粗加工的电火花放电间隙比中加工的放电间隙要大,而中加工的电火花放电间隙比精加工的放电间隙又要大一些。当用一个电极进行粗加工时,将工件的大部分余量蚀除掉后,其底面和侧壁四周的表面粗糙度很差,为了将其修光,就得转换规准逐挡进行修整。但由于中、精加工规准的放电间隙比粗加工规准的放电间隙小,若不采取措施则四周侧壁就无法修光了。平动头就是为解决修光侧壁和提高其尺寸精度而设计的。平动头是一个使装在其上的电极能产生向外机械补偿动作的工艺附件。当用单电极加工型腔时,使用平动头可以补偿上一个加工规准和下一个加工规准之间的放电间隙差。平动头的动作原理是:利用偏心机构将伺服电机的旋转运动通过平动轨迹保持机构转化成电极上每一个质点都能围绕其原始位置在水平面内作平面小圆周运动,许多小圆的外包络线面积就形成加工横截面积,如图2-7所示,其中每个质点运动轨迹的半径就称为平动量,其大小可以由零逐渐调大,以补偿粗、中、精加工的电火花放电间隙之差,从而达到修光型腔的目的。具体平动头的结构及原理可以参考其他书籍。目前,机床上安装的平动头有机械式平动头和数控平动头,其外形如图2-8所示。机械式平动头由于有平动轨迹半径的存在,它无法加工有清角要求的型腔;而数控平动头可以两轴联动,能加工出清棱、清角的型孔和型腔。图2-7 平动头扩大间隙原理图(a) 机械式平动头 (b) 数控平动头图2-8 平动头外形与一般电火花加工工艺相比较,采用平动头电火花加工有如下特点:(1) 可以通过改变轨迹半径来调整电极的作用尺寸,因此尺寸加工不再受放电间隙的限制。(2) 用同一尺寸的工具电极,通过轨迹半径的改变,可以实现转换电规准的修整,即采用一个电极就能由粗至精直接加工出一副型腔。(3) 在加工过程中,工具电极的轴线与工件的轴线相偏移,除了电极处于放电区域的部分外,工具电极与工件的间隙都大于放电间隙,实际上减小了同时放电的面积,这有利于电蚀产物的排除,提高加工稳定性。(4) 工具电极移动方式的改变,可使加工的表面粗糙度大有改善,特别是底平面处。 2. 脉冲电源在电火花加工过程中,脉冲电源的作用是把工频正弦交流电流转变成频率较高的单向脉冲电流,向工件和工具电极间的加工间隙提供所需要的放电能量以蚀除金属。脉冲电源的性能直接关系到电火花加工的加工速度、表面质量、加工精度、工具电极损耗等工艺指标。脉冲电源输入为380 V、50 Hz的交流电,其输出应满足如下要求:(1) 要有一定的脉冲放电能量,否则不能使工件金属气化。(2) 火花放电必须是短时间的脉冲性放电,这样才能使放电产生的热量来不及扩散到其他部分,从而有效地蚀除金属,提高成型性和加工精度。(3) 脉冲波形是单向的,以便充分利用极性效应,提高加工速度和降低工具电极损耗。(4) 脉冲波形的主要参数(峰值电流、脉冲宽度、脉冲间歇等)有较宽的调节范围,以满足粗、中、精加工的要求。(5) 有适当的脉冲间隔时间,使放电介质有足够时间消除电离并冲去金属颗粒,以免引起电弧而烧伤工件。电源的好坏直接关系到电火花加工机床的性能,所以电源往往是电火花机床制造厂商的核心机密之一。从理论上讲,电源一般有如下几种。 1) 弛张式脉冲电源 弛张式脉冲电源是最早使用的电源,它是利用电容器充电储存电能,然后瞬时放出,形成火花放电来蚀除金属的。因为电容器时而充电,时而放电,一弛一张,故又称“弛张式”脉冲电源(如图2-9所示)。由于这种电源是靠电极和工件间隙中的工作液的击穿作用来恢复绝缘和切断脉冲电流的,因此间隙大小、电蚀产物的排出情况等都影响脉冲参数,使脉冲参数不稳定,所以这种电源又称为非独立式电源。弛张式脉冲电源结构简单,使用维修方便,加工精度较高,粗糙度值较小,但生产率低,电能利用率低,加工稳定性差,故目前这种电源的应用已逐渐减少。图2-9 RC线路脉冲电源2) 闸流管脉冲电源闸流管是一种特殊的电子管,当对其栅极通入一脉冲信号时, 便可控制管子的导通或截止,输出脉冲电流。由于这种电源的电参数与加工间隙无关,故又称为独立式电源。闸流管脉冲电源的生产率较高,加工稳定,但脉冲宽度较窄,电极损耗较大。3) 晶体管脉冲电源晶体管脉冲电源是近年来发展起来的以晶体元件作为开关元件的用途广泛的电火花脉冲电源,其输出功率大,电规准调节范围广,电极损耗小,故适应于型孔、型腔、磨削等各种不同用途的加工。晶体管脉冲电源已越来越广泛地应用在电火花加工机床上。目前普及型(经济型)的电火花加工机床都采用高低压复合的晶体管脉冲电源,中、高档电火花加工机床都采用微机数字化控制的脉冲电源,而且内部存有电火花加工规准的数据库,可以通过微机设置和调用各挡粗、中、精加工规准参数。例如汉川机床厂、日本沙迪克公司的电火花加工机床,这些加工规准用C代码(例如C320)表示和调用,三菱公司则用 E代码表示。4. 工作液过滤和循环系统电火花加工中的蚀除产物,一部分以气态形式抛出,其余大部分是以球状固体微粒分散地悬浮在工作液中,直径一般为几微米。随着电火花加工的进行,蚀除产物越来越多,充斥在电极和工件之间,或粘连在电极和工件的表面上。蚀除产物的聚集,会与电极或工件形成二次放电。这就破坏了电火花加工的稳定性,降低了加工速度,影响了加工精度和表面粗糙度。为了改善电火花加工的条件,一种办法是使电极振动,以加强排屑作用;另一种办法是对工作液进行强迫循环过滤,以改善间隙状态。 工作液强迫循环过滤是由工作液循环过滤器来完成的。电火花加工用的工作液过滤系统包括工作液泵、容器、过滤器及管道等,使工作液强迫循环。图2-11是工作液循环系统油路图,它既能实现冲油,又能实现抽油。其工作过程是:储油箱的工作液首先经过粗过滤器l,经单向阀2吸入油泵3,这时高压油经过不同形式的精过滤器7输向机床工作液槽,溢流安全阀5使控制系统的压力不超过400 kPa,补油阀 11为快速进油用。待油注满油箱时,可及时调节冲油选择阀10,由阀8来控制工作液循环方式及压力。当阀10在冲油位置时,补油冲油都不通,这时油杯中油的压力由阀8控制;当阀10在抽油位置时,补油和抽油两路都通,这时压力工作液穿过射流抽吸管9,利用流体速度产生负压,达到实现抽油的目的。 图2-11 工作液循环系统油路图5. 数控系统1) 数控电火花机床的类型数控系统规定除了直线移动的X、Y、Z三个坐标轴系统外,还有三个转动的坐标系统,即绕X轴转动的A轴,绕Y轴转动的B轴,绕Z轴转动的C轴。若机床的Z轴可以连续转动但不是数控的,如电火花打孔机,则不能称为C轴,只能称为R轴。根据机床的数控坐标轴的数目,目前常见的数控机床有三轴数控电火花机床、四轴三联动数控电火花机床、四轴联动或五轴联动甚至六轴联动电火花加工机床。三轴数控电火花加工机床的主轴Z和工作台X、Y都是数控的。从数控插补功能上讲,又将这类型机床细分为三轴两联动机床和三轴三联动机床。三轴两联动是指X、Y、Z三轴中,只有两轴(如X、Y轴)能进行插补运算和联动,电极只能在平面内走斜线和圆弧轨迹(电极在Z轴方向只能作伺服进给运动,但不是插补运动)。三轴三联动系统的电极可在空间作X、Y、Z方向的插补联动(例如可以走空间螺旋线)。四轴三联动数控机床增加了C轴,即主轴可以数控回转和分度。现在部分数控电火花机床还带有工具电极库,在加工中可以根据事先编制好的程序,自动更换电极。2) 数控电火花机床的数控系统工作原理数控电火花机床能实现工具电极和工件之间的多种相对运动,可以用来加工多种较复杂的型腔。目前,绝大部分电火花数控机床采用国际上通用的ISO代码进行编程、程序控制、数控摇动加工等,具体内容如下:( ISO代码编程ISO代码是国际标准化机构制定的用于数控编码和程序控制的一种标准代码。代码主要有G指令(即准备功能指令)和M指令(即辅助功能指令),具体见表2-1。 表2-1 常用的电火花数控指令6. 电火花机床常见功能 电火花机床的常见功能如下:(1) 回原点操作功能。数控电火花在加工前首先要回到机械坐标的零点,即X、Y、Z轴回到其轴的正极限处。这样,机床的控制系统才能复位,后续操作机床运动不会出现紊乱。(2) 置零功能。将当前点的坐标设置为零。(3) 接触感知功能。让电极与工件接触,以便定位。(4) 其他常见功能(如图2-15所示)。图2-15 电火花机床常见功能2.3 电火花线切割加工机床简介2.3.1 机床分类、型号1分类 线切割加工机床可按多种方法进行分类,通常按电极丝的走丝速度分成快速走丝线切割机床(WEDM-HS)与慢速走丝线切割机床(WEDM-LS)。1) 快速走丝线切割机床 快速走丝线切割机床的电极丝作高速往复运动,一般走丝速度为810 m/s,是我国独创的电火花线切割加工模式。快速走丝线切割机床上运动的电极丝能够双向往返运行,重复使用,直至断丝为止。线电极材料常用直径为0.100.30 mm的钼丝(有时也用钨丝或钨钼丝)。对小圆角或窄缝切割,也可采用直径为0.6 mm的钼丝。工作液通常采用乳化液。快速走丝线切割机床结构简单、价格便宜、生产率高,但由于运行速度快,工作时机床震动较大。钼丝和导轮的损耗快,加工精度和表面粗糙度就不如慢速走丝线切割机床,其加工精度一般为0.010.02 mm,表面粗糙度Ra为1.252.5 m。 2) 慢速走丝线切割机床慢速走丝线切割机床走丝速度低于0.2 m/s。常用黄铜丝(有时也采用紫铜、钨、钼和各种合金的涂覆线)作为电极丝,铜丝直径通常为0.100.35 mm。电极丝仅从一个单方向通过加工间隙,不重复使用,避免了因电极丝的损耗而降低加工精度。同时由于走丝速度慢,机床及电极丝的震动小,因此加工过程平稳,加工精度高,可达0.005 mm,表面粗糙度Ra0.32 m。慢速走丝线切割机床的工作液一般采用去离子水、煤油等,生产率较高。慢走丝机床主要由日本、瑞士等国生产,目前国内有少数企业引进国外先进技术与外企合作生产慢走丝机床。2型号国标规定的数控电火花线切割机床的型号,如DK7725的基本含义为:D为机床的类别代号,表示是电加工机床;K为机床的特性代号,表示是数控机床;第一个7为组代号,表示是电火花加工机床,第二个7为系代号(快走丝线切割机床为7,慢走丝线切割机床为6,电火花成型机床为1);25为基本参数代号,表示工作台横向行程为250 mm。2.3.2 快走丝线切割机床简介 由于科学技术的发展,目前在生产中使用的快走丝线切割机床几乎全部采用数字程序控制,这类机床主要由机床本体、脉冲电源、数控系统和工作液循环系统组成。1机床本体机床本体主要由床身、工作台、运丝机构和丝架等组成,具体介绍如下:1) 床身床身是支承和固定工作台、运丝机构等的基体。因此,要求床身应有一定的刚度和强度,一般采用箱体式结构。床身里面安装有机床电气系统、脉冲电源、工作液循环系统等元器件。2) 工作台目前在电火花线切割机床上采用的坐标工作台,大多为X、Y方向线性运动。不论是哪种控制方式,电火花线切割机床最终都是通过坐标工作台与丝架的相对运动来完成零件加工的,坐标工作台应具有很高的坐标精度和运动精度,而且要求运动灵敏、轻巧,一般都采用“十”字滑板、滚珠导轨,传动丝杠和螺母之间必须消除间隙,以保证滑板的运动精度和灵敏度。3) 运丝机构在快走丝线切割加工时,电极丝需要不断地往复运动,这个运动是由运丝机构来完成的。最常见的运丝机构是单滚筒式,电极丝绕在储丝筒上,并由丝筒作周期性的正反旋转使电极丝高速往返运动。储丝筒轴向往复运动的换向及行程长短由无触点接近开关及其撞杆控制(如图2-16中的5、4),调整撞杆的位置即可调节行程的长短。这种形式的运丝机构的优点是结构简单、维护方便,因而应用广泛。其缺点是绕丝长度小,电动机正反转动频繁,电极丝张力不可调。图2-16 快走丝线切割机床结构图4) 丝架运丝机构除上面所叙述的内容外,还包括丝架。丝架的主要作用是在电极丝快速移动时,对电极丝起支撑作用,并使电极丝工作部分与工作台平面保持垂直。为获得良好的工艺效果,上、下丝架之间的距离宜尽可能小。为了实现锥度加工,最常见的方法是在上丝架的上导轮上加两个小步进电动机,使上丝架上的导轮作微量坐标移动(又称U、V轴移动),其运动轨迹由计算机控制。2脉冲电源电火花线切割加工的脉冲电源与电火花成型加工作用的脉冲电源在原理上相同,不过受加工表面粗糙度和电极丝允许承载电流的限制,线切割加工脉冲电源的脉宽较窄(260 s),单个脉冲能量、平均电流(15 A)一般较小,所以线切割总是采用正极性加工。3数控系统数控系统在电火花线切割加工中起着重要作用,具体体现在两方面:(1) 轨迹控制作用。它精确地控制电极丝相对于工件的运动轨迹,使零件获得所需的形状和尺寸。(2) 加工控制。它能根据放电间隙大小与放电状态控制进给速度,使之与工件材料的蚀除速度相平衡,保持正常的稳定切割加工。 目前绝大部分机床采用数字程序控制,并且普遍采用绘图式编程技术,操作者首先在计算机屏幕上画出要加工的零件图形,线切割专用软件(如YH软件、北航海尔的CAXA线切割软件)会自动将图形转化为ISO代码或3B代码等线切割程序。4. 工作液循环系统工作液循环与过滤装置是电火花线切割机床不可缺少的一部分,其主要包括工作液箱、工作液泵、流量控制阀、进液管、回液管和过滤网罩等。工作液的作用是及时地从加工区域中排除电蚀产物,并连续充分供给清洁的工作液,以保证脉冲放电过程稳定而顺利地进行。目前绝大部分快走丝机床的工作液是专用乳化液。乳化液种类繁多,大家可根据相关资料来正确选用。2.3.3 慢走丝线切割机床简介 同快走丝线切割机床一样,慢走丝线切割机床也是由机床本体、脉冲电源、数控系统等部分组成的。但慢走丝线切割机床的性能大大优于快走丝线切割机床,其结构具有以下特点: 1主体结构1) 机头结构机床和锥度切割装置(U,V轴部分)实现了一体化,并采用了桁架铸造结构,从而大幅度地强化了刚度。2) 主要部件精密陶瓷材料大量用于工作臂、工作台固定板、工件固定架、导丝装置等主要部件,实现了高刚度和不易变形的结构。3) 工作液循环系统慢走丝线切割机床大多数采用去离子水作为工作液,所以有的机床(如北京阿奇)带有去离子系统。在较精密加工时,慢走丝线切割机床采用绝缘性能较好的煤油作为工作液。2走丝系统慢走丝线切割机床的电极丝在加工中是单方向运动(即电极丝是一次性使用)的。在走丝过程中,电极丝由储丝筒出丝,由电极丝输送轮收丝。慢走丝系统一般由以下几部分组成:储丝筒、导丝机构、导向器、张紧轮、压紧轮、圆柱滚轮、断丝检测器、电极丝输送轮、其他辅助件(如毛毡、毛刷)等。图2-18为日本沙迪克公司某型号线切割机床的电极丝的送出部分结构图,其中某些部件的作用如下: 2圆柱滚轮 可使线电极从线轴平行地输出,且使张力维持稳定3导向孔模块 可使电极丝在张紧轮上正确地进行导向5张紧轮 在电极丝上施加必要的张力6压紧轮 防止电极丝张力变动的辅助轮7毛毡 去除附着在电极丝上的渣滓8断丝检测器 检查电极丝送进是否正常,若不正常送进,则发出报警信号,提醒发生电极丝断丝等故障9毛刷 防止电极丝断丝时从轮子上脱出图2-18 电极丝送丝装置2.3.4 线切割机床常见的功能下面简单介绍线切割机床较常见的功能。(1) 模拟加工功能。模拟显示加工时电极丝的运动轨迹及其坐标。(2) 短路回退功能。加工过程中若进给速度太快而电腐蚀速度慢,在加工时出现短路现象,控制器会改变加工条件并沿原来的轨迹快速后退,消除短路,防止断丝。(3) 回原点功能。遇到断丝或其他一些情况,需要回到起割点,可用此操作。(4) 单段加工功能。加工完当前段程序后自动暂停,并有相关提示信息,如:单段停止!按OFF键停止加工,按RST键继续加工。此功能主要用于检查程序每一段的执行情况。(5) 暂停功能。暂时中止当前的功能(如加工、单段加工、模拟、回退等)。(6) MDI功能。手动数据输入方式输入程序功能,即可通过操作面板上的键盘,把数控指令逐条输入存储器中。(7) 进给控制功能。能根据加工间隙的平均电压或放电状态的变化,通过取样、变频电路,不断定期地向计算机发出中断申请,自动调整伺服进给速度,保持平均放电间隙,使加工稳定,提高切割速度和加工精度。(8) 间隙补偿功能。线切割加工数控系统所控制的是电极丝中心移动的轨迹。因此,加工零件时有补偿量,其大小为单边放电间隙与电极丝半径之和。(9) 自动找中心功能。电极丝能够自动找正后停在孔中心处。(10) 信息显示功能。可动态显示程序号、计数长度、电规准参数、切割轨迹图形等参数。 (11) 断丝保护功能。在断丝时,控制机器停在断丝坐标位置上,等待处理,同时高频停止输出脉冲,丝筒停止运转。(12) 停电记忆功能。可保存全部内存加工程序,当前没有加工完的程序可保持24小时以内,随时可停机。(13) 断电保护功能。在加工时如果突然发生断电,系统会自动将当时的加工状态记下来。在下次来电加工时,系统自动进入自动方式,并提示:从断电处开始加工吗按OFF键退出按RST键继续这时,如果想继续从断电处开始加工,则按下RST键,系统将从断电处开始加工,否则按OFF键退出加工。使用该功能的前提是:不要轻易移动工件和电极丝,否则来电继续加工时,会发生很长时间的回退,影响加工效果甚至导致工件报废。(14) 分时控制功能。可以一边进行切割加工,一边编写另外的程序。 (15) 平移功能。主要用在切割完当前图形后,在另一个位置加工同样图形等场合。这种功能可以省掉重新画图的时间。(16) 跳步功能。将多个加工轨迹连接成一个跳步轨迹(如图2-20所示),可以简化加工的操作过程。图中,实线为零件形状,虚线为电极丝路径。(17) 任意角度旋转功能。可以大大简化某些轴对称零件的程编工艺,如齿轮只需先画一个齿形,然后让它旋转几次,就可圆满完成。 (18) 代码转换功能。能将ISO代码转换为3B代码等。(19) 上下异性功能。可加工出上下表面形状不一致的零件,如上面为圆形,下面为方形等。图2-20 轨迹跳步2.4电火花加工条件(1).工具电极和工件电极之间必须维持合理的距离在该距离范围内,既可以满足脉冲电压不断击穿介质,产生火花放电,又可以适应在火花通道熄灭后介质消电离以及排出蚀除产物的要求。若两电极距离过大,则脉冲电压不能击穿介质、不能产生火花放电,若两电极短路,则在两电极间没有脉冲能量消耗,也不可能实现电腐蚀加工。(2).两电极之间必须充入介质在进行材料电火花尺寸加工时,两极间为液体介质(专用工作液或工业煤油);在进行材料电火花表面强化时,两极间为气体介质。(3).输送到两电极间的脉冲能量密度应足够大在火花通道形成后,脉冲电压变化不大,因此,通道的电流密度可以表征通道的能量密度。能量密度足够大,才可以使被加工材料局部熔化或气化,从而在被加工材料表面形成一个腐蚀痕(凹坑),实现电火花加工。因而,通道一般必须有105-106A1em电流密度。放电通道必须具有足够大的峰值电流,通道才可以在脉冲期间得到维持。一般情况下,维持通道的峰值电流不小于2A。(4).放电必须是短时间的脉冲放电脉冲。放电持续时间一般为10-1-10-3s。由于放电时间短,使放电时产生的热能来不及在被加工材料内部扩散,从而把能量作用局限在很小范围内,保持火花放电的冷极特性。(5).脉冲放电需重复多次进行,并且多次脉冲放电在时间上和空间上是分散的这里包含两个方面的意义:其一时间上相邻的两个脉冲不在同一点上形成通道;其二,若在一定时间范围内脉冲放电集中发生在某一区域,则在另一段时间内,脉冲放电应转移到另一区域。只有如此,才能避免积碳现象,进而避免发生电弧和局部烧伤。(6).脉冲放电后的电蚀产物能及时排放至放电间隙之外,使重复性放电顺利进行在电火花加工的生产实际中,上述过程通过两个途径完成。一方面,火花放电以及电腐蚀过程本身具备将蚀除产物排离的固有特性;蚀除物以外的其余放电产物如介质的气化物)亦可以促进上述过程;另一方面,还必须利用一些人为的辅助工艺措施,例如工作液的循环过滤,加工中采用的冲、抽油措施等等。 第三章 电火花加工的特点3.1电弧火花加工的工艺特点电火花加工是与机械加工完全不同的一种新工艺。随着工业生产的发展和科学技术的进步,具有高熔点、高硬度、高强度、高脆性,高粘性和高纯度等性能的新材料不断出现。具有各种复杂结构与特殊工艺要求的工件越来越多,这就使得传统的机械加工方法不能加工或难于加工。因此,人们除了进一步发展和完善机械加工法之外,还努力寻求新的加工方法。电火花加工法能够适应生产发展的需要,并在应用中显示出很多优异性能,因此,得到了迅速发展和日益广泛的应用。电火花加工的特点如下: 1.脉冲放电的能量密度高,便于加工用普通的机械加工方法难于加工或无法加工的特殊材料和复杂形状的工件。不受材料硬度影响,不受热处理状况影响。 2.脉冲放电持续时间极短,放电时产生的热量传导扩散范围小,材料受热影响范围校 3.加工时,工具电极与工件材料不接触,两者之间宏观作用力极校工具电极材料不需比工件材料硬,因此,工具电极制造容易。4.可以改革工件结构,简化加工工艺,提高工件使用寿命,降低工人劳动强度。基于上述特点,电火花加工的主要用途有以下几项1)制造冲模、塑料模、锻模和压铸模。 2)加工小孔、畸形孔以及在硬质合金上加工螺纹螺孔。 3)在金属板材上切割出零件。 4)加工窄缝。 5)磨削平面和圆面。 6)其它(如强化金属表面,取出折断的工具,在淬火件上穿孔,直接加工型面复杂的零件等)。第四章 电火花加工工艺流程数控电火花加工是一门重要的特种加工技术,它在模具制造、航空、电子、核能、仪器、轻工等部门用来解决各种复杂形状零件和难加工材料的加工问题。电火花加工可以说是一种不可替代的工艺方法,发挥着重要的作用。4.1 模具电火花加工的工艺确定模具零件在制造前,根据本身的特点、加工要求来确定合理的加工工艺。一般来说,为了使模具零件在尽量短的时间内加工出来,减少加工成本,提高加工效率,应尽量选用铣削加工、线切割加工等工艺来加工零件。当在铣削加工、线切割加工等加工不到或工件有特殊要求的情况下才进行电火花加工,如刀具难以够到的复杂表面,需要深度切削的地方,长径比特别大的地方,精密小型腔、窄缝、沟槽、拐角,不便于切削加工装夹,材料硬度很高,规定了要提供火花纹表面等的加工场合。电火花加工前要对零件图进行分析,了解工件的结构特点、材料,明确加工要求。根据加工对象、精度及表面粗糙度等要求和机床功能选择采用合适的电火花成形工艺方法。4.2 对工件轮廓进行预加工一般在电火花加工前,需要对工件轮廓进行预加工,如上图所示。预加工一般使用机械加工的方法,如加工中心、普通铣床等。预加工的目的是为了减少电火花加工中的材料去除量,可以大幅度提高电火花加工速度,电极的损耗减少,使得电极的数目减少。粗加工电流可以较小,从而使加工表面受影响小。4.3 电极的设计与制造电火花加工首先要进行电极的设计、制造。当前计算机辅助设计与制造(CAD/CAM)技术已广泛应用于模具制造行业。那些高端的CAD/CAM软件,像UG、Pro/E、CimatronE、MasterCAM等都提供了强大的电极设计、编程功能,减少了手工拆电极的繁琐工作,与传统的电极设计、制造相比,提高效率十几倍甚至几十倍。根据企业的工艺水平,考虑电极加工精度要求、加工成本等工艺要点来安排电极的制造工艺。目前模具企业已广泛使用加工中心来制造各种型面复杂的电极。加工中心比传统铣削加工速度快,全自动,重复生产的精度很高,可得到较复杂的形状。最近推出的高速加工中心,能胜任形状更复杂、精度要求更高类电极的制造,为制造电极提供了完美的技术解决方案。线切割加工也是很常用的一种电极加工方法,非常适合2D电极的制造,可用来单独完成整个电极的制造,或者用于铣削制造电极的清角加工。另外,薄片类电极用机械切削加工很难进行,而使用线切割加工可以获得很高的加工效率和加工精度;使用慢走丝线切割机床,可以加工有斜度、上下异形的复杂电极,获得很高的加工精度、表面质量。一般使用的电极材料有石墨和纯铜。一般精密、小电极选用纯铜材料,而大的电极选用石墨材料。采用快速装夹定位系统来制造电极是电火花加工的一种先进工艺方法,它是将电极坯料装夹在加工机床的装夹系统上来制造,制造完成后,可直接将电极装于电火花加工机床的快速装夹系统上进行放电加工,给加工操作带来了很大的方便,提高了电极的制造效率,也保证了电极的装夹、定位精度。4.4 工件、电极的装夹与校正电火花加工将工件安装于工作台,并要对工件进行校正。由于电火花加工中电极与工件并不接触,宏观作用力很小,所以工件装夹一般都比较简单。通常用永磁吸盘来装夹工件,为了适应各种不同工件加工的需求,还可以使用其他工具来进行装夹,如平口钳、导磁块、正弦磁台、角度导磁块等。工件装夹后要对其进行校正,以保证工件的坐标系方向与机床的坐标系方向一致。在实际加工中常用校表来校正工件。电极安装在机床主轴上,应使电极轴线与主轴轴线方向一致,保证电极与工件在垂直的情况下进行加工。电极的装夹方式有自动装夹和手动装夹两种。自动装夹电极是先进数控电火花加工机床的一项自动功能。它是通过机床的电极自动交换装置(ATC)和配套使用电极专用夹具(EROWA、3R)来完成电极换装的,使用电极专用夹具可实现电极的自然校正,无需对电极进行校正或调整,能够保证电极与机床的正确位置关系,大大减少了电火花加工过程中装夹、重复调整的时间。手动装夹电极是指使用通用的电极夹具,通过可调节电极角度的夹头来校正电极,由人工完成电极装夹、校正操作。如下图4.1图4.1电极的校正4.5加工的定位当工件和电极装夹、校正完成后,就需要将电极对准工件的加工位置,才能在工件上加工出准确的型腔。模具制造电火花加工最常用的定位方式是利用电极基准中心与工件基准中心之间的距离来确定加工位置,称之为“四面分中”。利用电极基准中心与工件单侧之间的距离确定加工位置的定位方式也比较常用,称之为“单侧分中”。另外,还有一些其他的定位方式。 各种定位方式都是通过一定的方法来实现的,通常运用电火花加工机床的接触感知功能来获得正确的加工位置,它可以直接利用电极的基准面与工件的基准面进行接触感知实现定位;精密模具电火花加工采用基准球进行接触感知定位,点接触减少了误差,可实现较高精度的定位;另外,还有千分表比较、放电定位等定位方法。使用快速装夹定位系统,可省去重复的定位操作,当配备ATC装置时,则完全可以实现长时间无人操作的自动化加工,可有效地提升企业的竞争力。目前的数控电火花加工机床都具有自动找内中心、找外中心、找角、找单侧等功能,这些功能只要输入相关的测量数值,即可方便地实现加工的定位,比手动定位要方便得多。4.6 电参数的配置在完成校正、定位等基本操作以后,就要根据加工要求选择合理的电参数。电参数选择的好坏,直接影响加工的各项工艺指标。选用电参数最终目的是为了达到预定的加工尺寸和表面粗糙度要求。选用电参数时,基本上要考虑:电极数目、电极损耗、工作液处理、加工表面粗糙度要求、电极缩放量、加工面积、加工深度等因素。粗加工参数选择的主要依据是电极缩放尺寸的大小。粗加工电极的缩放尺寸一般都比较大,可以选用其安全间隙

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论