全等三角形教学设计.doc_第1页
全等三角形教学设计.doc_第2页
全等三角形教学设计.doc_第3页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

全等三角形教学设计一、学生特点分析:八年级的学生经过对直线、线段、角等几何图形的学习已经有了一定的知识积累,且学生对动手操作、活动性的问题易感兴趣,大多数学生学习积极性高。二、教学内容分析: 本节课重点研究了全等三角形的有关概念、表示方法及对应部分的关系。理解和掌握全等三角形的有关概念是今后学习全等三角形的判定和应用的预备知识,也是证明角相等,线段相等、了解平面图形的平移、旋转、今后学习相似三角形必备知识。因此,本节内容在教材中处于非常重要的地位,起着承前启后的作用。三、教学目标1、理解全等形、全等三角形的概念及全等三角形表示方法;2、会寻找全等三角形的对应边、对应角和对应顶点;3、掌握全等三角形的性质,并能进行简单的推理和计算。四、教学重点、难点: 重点:探究全等三角形的性质。 难点:正确寻找两个全等三角形的对应边、对应角。五教学准备与课时:多媒体课件、三角板、纸板等。 课时:一课时六教学过程(一) 提出问题,创设情境 我们身边经常看到“一模一样”的图形,比如同一版面的记念邮票,同一版面的人民币、用两张纸叠在一起剪出的两张窗花等,请大家举出这类图形的例子。说明:让学生在举出实际例子以及对所举例子的辨析中获得对全等图形尽可能多的精确的感知。1. 问题:(出示图片)观察思考每组的两个图形有什么特点?2.引导学生理解全等形3.概括全等形的准确定义(板书)(二)合作交流、动手实践.1.观察屏幕给出的每组的两个图形哪些是全等形?2.结合上述回答分析全等形有什么特征?3. 动手请同学们在纸板上做两个全等的三角形,并把它们取下来观察。操作和观察(学生用两块透明塑料片叠合在一起,任意剪两个全等的三角形,教师制作两个全等三角形的复合投影片演示。)图1111(1)将重合的两块全等三角形塑料片中的一个沿着一边所在的直线移动,观察移动过程中这两个三角形有哪几种不同位置?画出这两个全等三角形不同位置的组合图形。(2)图1111是上述移动过程中的两个全等三角形组合的图形,说出它们的对应顶点、对应边、对应角。(3)将重合的两块三角形塑料片,以一边所在的直线为轴,把其中一个三角形翻折180,请你画出翻折后的两个全等三角形组合的图形。(三)归纳总结、获得新知1、归纳全等三角形定义:能够完全重合的两个三角形叫做全等三角形2、 实图操作:将ABC沿直线BC平移得到ABC 强调:互相重合的顶点叫做对应顶点.互相重合的边叫做对应边.互相重合的顶点角叫做对应角3.请学生观察指出图中的对应顶点、对应边、对应角。交流总结得出:对应顶点: A和A、 B和B 、 C和C对应边: AB和AB、BC和BC、AC和AC对应角: A和A 、B和B、C和C练习:将两块全等的三角形塑料片拼合成如图11.12中的图形,并指出它们的对应顶点、对应边、对应角。 图11.124. 全等三角形表示:通常把两个全等三角形记作:ABC ABC 符号“ ”读作“全等于”强调:记两个三角形全等时,通常把表示对应顶点的字母写在对应的位置上。5.出示图片操作演示图形变换过程,图形通过平移、翻折、旋转后可以完全重合,分析每组图中全等三解形对应边、对应角有什么关系?总结得全等三角形的性质:全等三角形的对应边相等,对应角相等。6.引导学生利用几何语言来描述其性质(板书)ABC DEF (已知) AB=DE, BC=EF, AC=DF (全等三角形的对应边相等) A= D, B= E , C= F (全等三角形的对应角相等)7. 交流找全等三角形的对应元素时一般规律(四)议一议、练一练1、如图,已知ABCADE,C=E,BC=DE,其它的对应边有: 对应角有: 想一想: BAD= CAE吗?为什么? 2、找一找:请指出下列全等三角形的对应边和对应角(1) ABE ACF (2) BCE CBF 3、课堂练习11.13如图,11.13中DEFABC,A和D、C和F是对应顶点,用推理方法说出这两个三角形中相等的边和角。(五)课堂小结:1识别全等三角形的对应边、对应角的关键是正确识别它们的对应顶点。2用全等三变换的方法观察图形,有助于正确、迅速的从复杂图形中识别出全等三角形(六)布置作业:P4习题1、2、3教学后记 :会说出

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论