




已阅读5页,还剩18页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
27 1反比例函数 学习目标 1 经历从问题情境建立反比例函数模型的过程 2 结合具体问题情境体会反比例函数的意义 能根据已知条件确定反比例函数的表达式 函数定义 一般地 在一个变化过程中 如果有两个变量x和y 并且对于x的每一个给定的值 y都有唯一的一个值与其相对应 那么我们就说x是自变量 y是x的函数 y 2x 3y 10 xy 4x 一次函数定义 一般地 形如 为常数 的函数 叫做一次函数 当 时 即y kx 是正比例函数是一种特殊的一次函数 今天我们来学习一种新的函数 学习之前 先来看几个问题情境 函数关系式具有什么共同特征 课堂探究 具有的形式 其中k 0 k为常数 一般地 如果变量y和x之间函数关系可以表示成 k是常数 且k 0 的形式 则称y是x的反比例函数 反比例函数中自变量x的取值范围是什么 想一想 反比例函数的自变量x能不能是0 为什么 自变量x的取值范围是不等于 的一切实数 在函数中 自变量x的取值范围是 A B C 等价形式 k 0 y kx 1 xy k y与x成反比例 记住这三种形式 知道 例1下列关系式中的y是x的反比例函数吗 如果是 比例系数k是多少 可以改写成 所以y是x的反比例函数 比例系数k 1 不具备的形式 所以y不是x的反比例函数 y是x的反比例函数 比例系数k 4 不具备的形式 所以y不是x的反比例函数 可以改写成所以y是x的反比例函数 比例系数k 2 关系式xy 4 0中y是x的反比例函数吗 若是 比例系数k等于多少 若不是 请说明理由 xy 4 0可以改写成 比例系数k等于 4 所以y是x的反比例函数 y 3x 1 y 2x y 3x 下列函数中哪些是反比例函数 哪些是一次函数 反比例函数 一次函数 在下列函数中 y是x的反比例函数的是 A B C xy 5 D 已知函数是正比例函数 则m 若此函数是反比例函数 则m C 8 6或 6 已知y是x的反比例函数 当x 2时 y 6 写出y与x的函数关系式 求当x 4时y的值 例题欣赏 二 待定系数法求函数的解析式 已知y是x的反比例函数 当x 2时 y 6 写出y与x的函数关系式 求当x 4时y的值 例题欣赏 因为当x 2时y 6 所以有 y与x的函数关系式为 把x 4代入得 待定系数法求函数的解析式 1 写出这个反比例函数的表达式 解 y是x的反比例函数 2 根据函数表达式完成上表 2 4 1 1 在下列函数中 y是x的反比例函数的是 A B 5 C xy 5 0 D y x2 4 2 当m 时 函数是反比例函数 3 已知函数是反比例函数 则m 三 随堂练习 4 函数的自变量x的取值范围是 5 已知y是x的反比例函数 且x 2时 y 3 1 写出y与x之间的函数表达式 2 如果自变量y 6时 求x的值 练习 1 当m 时 关于x的函数y m 1 xm2 2是反比例函数 分析 m2 2 1 m 1 0 即 m 1 m 1 1 m为何值时是正比例函数呢 2已知y与x2成反比例 且x 3时 y 4 求y与x的函数表达式 并求x 2时y的值 3若函数y m2 1 x3m2 m 5为反比例函数 则m 5 如果y是z的反比例函数 z是x的反比例函数 那么y与x有怎样的函数关系 6 如果y是z的反比例函数 z是x的正比例函数 且x 0 那么y与x有怎样的函数关系 4 如果y是x的反比例函数
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 广西邮政考试题库及答案
- 物业公司关键绩效指标(KPI)考核体系及实施方案
- 森林培育现场讲解课件
- 2025梯子安全知识专项培训
- 2025年法律行业招聘面试技巧大揭秘模拟题及参考答案详解
- 2025年室内设计师中级专业技能实战预测题集锦
- 2025年《监察法》知识考试题库及参考答案
- 2025年农村基层安全管理人才队伍建设与招聘考试现状分析
- 2025年交通理论考试题库及答案
- 2025年区块链技术转移中心市场部招聘考试题库详解
- 保险公司案件风险排查工作报告
- 《化妆品技术》课件-化妆品的历史起源与发展
- 《建筑施工安全检查标准》JGJ59-20248
- 住宅公共部分装修综合项目施工专项方案
- 安徽医科大学辅导员考试试题2024
- 《合理利用网络作业设计方案-2023-2024学年初中道德与法治统编版》
- 皮肤病真菌感染性皮肤
- JJF1059.1测量不确定度评定培训讲演稿
- 人教版新目标初中英语Go-for-it!单词大全(音标齐全-已反复校对-单词分类-便于识记)
- 人体解剖学与组织胚胎学(高职)全套教学课件
- 二年级上册语文教材解读-
评论
0/150
提交评论