




已阅读5页,还剩7页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
重点与难点第1章 半导体器件基本方程一般来说要从原始形式的半导体器件基本方程出发来求解析解是极其困难的,通常需要先对方程在一定的具体条件下采用某些假设来加以简化,然后再来求其近似解。随着半导体器件的尺寸不断缩小,建立新解析模型的工作也越来越困难,一些假设受到了更大的限制并变得更为复杂。简化的原则是既要使计算变得容易,又要能保证达到足够的精确度。如果把计算的容易度与精确度的乘积作为优值的话,那么从某种意义上来说,对半导体器件的分析问题,就是不断地寻找具有更高优值的简化方法。要向学生反复解释,任何方法都是近似的,关键是看其精确程度和难易程度。此外,有些近似方法在某些条件下能够采用,但在另外的条件下就不能采用,这会在后面的内容中具体体现出来。第2章 PN结第2.1节 PN结的平衡状态本节的重点是PN结空间电荷区的形成、内建电势的推导与计算、耗尽区宽度的推导与计算。本节的难点是对耗尽近似的理解。要向学生强调多子浓度与少子浓度相差极其巨大,从而有助于理解耗尽近似的概念,即所谓耗尽,是指“耗尽区”中的载流子浓度与平衡多子浓度或掺杂浓度相比可以忽略。第2.2节 PN结的直流电流电压方程本节的重点是对PN结扩散电流的推导。讲课时应该先作定性介绍,让学生先在大脑中建立起物理图象,然后再作定量的数学推导。当PN结上无外加电压时,多子的扩散趋势正好被高度为qVbi的势垒所阻挡,电流为零。外加正向电压时,降低了的势垒无法阻止载流子的扩散,于是构成了流过PN结的正向电流。正向电流的电荷来源是P区空穴和N区电子,它们都是多子,所以正向电流很大。外加反向电压时,由于势垒增高,多子的扩散变得更困难。应当注意,“势垒增高”是对多子而言的,对各区的少子来说,情况恰好相反,它们遇到了更深的势阱,因此反而更容易被拉到对方区域去,从而构成流过PN结的反向电流。反向电流的电荷来源是少子,所以反向电流很小。本节的难点是对有外加电压时势垒区两旁载流子的运动方式的理解、以及电子(空穴)电流向空穴(电子)电流的转化。第2.3节 准费米能级与大注入效应本节的重点是PN结在外加正向电压和反向电压时的能带图、大注入条件及大注入条件下的PN结电流公式。本节的难点是大注入条件下自建场的形成原因。要向学生说明,大注入自建场的推导与前面进行过的非均匀掺杂内建场的推导在本质上是相同的,都是令多子电流密度方程为零而解出电场,这也是分析微电子器件时的一种常用方法。第2.4节 PN结的击穿本节的重点是利用雪崩击穿临界电场和通过查曲线来求得雪崩击穿电压的方法,以及PN结的实际结构(高阻区的厚度和结深)对击穿电压的影响,这些都是实际工程中的常见问题。本节的难点是雪崩倍增因子与碰撞电离率之间关系的数学推导。在讲课时可以将对碰撞电离率的简化移到推导过程的较前处,这样既显著简化了推导过程,又不会影响所得的结果。对于有能力的学生可以鼓励他们看懂教材上的推导过程。本节的另一个难点是对雪崩击穿条件的理解。根据雪崩击穿条件,当电离率积分趋于1时雪崩倍增因子趋于无穷大,此时发生雪崩击穿。但是电离率积分趋于1意味着每个载流子通过耗尽区时只产生一对电子空穴对,这怎么会使电流趋于无穷大呢?答案是每对新的电子空穴对在通过耗尽区时又会产生一对电子空穴对,从而使载流子无限地增加下去。本节的第三个难点是对雪崩击穿临界电场的理解。这个临界电场并不是从物理概念推导出来的,而是根据碰撞电离率强烈地依赖于电场强度的事实而引入的。第2.5节 PN结的势垒电容本节的重点是PN结势垒电容的物理意义、势垒电容的定义和突变结与线性缓变结势垒电容的计算。要特别说明的是,虽然PN结势垒电容有与平行板电容器相同的计算公式,但由于势垒区的厚度是随偏压而变的,所以势垒电容的值也将随偏压而变,是偏压的函数。本节的难点是对实际扩散结的势垒电容的计算。第2.6节 PN结的交流小信号特性与扩散电容本节的重点是PN结扩散电容的物理意义、小信号电导和扩散电容的计算。应该通过将势垒电容和扩散电容在各个方面进行比较,特别是这两种电容的物理意义的比较,使学生充分理解这两种电容的本质区别。扩散电容上的电荷是储存在中性区的非平衡载流子电荷,这一点是容易理解的。但是学生常常误认为扩散电容上的成对的正负电荷是位于PN结两侧的非平衡少子电荷。实际上成对的正负电荷应该是位于PN结同侧的非平衡少子电荷和非平衡多子电荷。本节的难点是PN结小信号交流电流的推导过程,一定要在推导之前先将推导的思路清晰地告诉学生。第2.7节 PN结的开关特性本节的重点是PN结的瞬态开关特性,其中最重要的知识点是为什么在反向恢复期间会出现一个很大的反向电流。已知PN结反向电流的电荷来源是少子,所以反向电流应该极其微小。但在反向恢复过程中,却会出现一个很大的反向电流。这是因为正向期间存储在中性区内的大量非平衡少子电荷充当了反向电流的电荷来源。本节的另一个重要的知识点是,反向恢复期间少子存储电荷的下降有两个途径,一个是反向电流的抽取,一个是少子自身的复合。由此可以得到反映少子存储电荷下降规律的微分方程。本节的难点是在反向恢复过程的各阶段,对PN结的电荷和电压的变化情形的理解,以及对反映少子存储电荷下降规律的微分方程的求解。第3章 双极结型晶体管第3.1节 双极结型晶体管基础本节的第一个重点是共基极放大区晶体管中的电流传输过程。输入电流IE流过晶体管成为输出电流IC时将发生两部分亏损,要讲清楚发生这两部分亏损的原因,以及为提高晶体管的电流传输效率和减少这两部分亏损应采取的具体措施。第二个重点是基区输运系数和发射结注入效率的定义。第三个重点是各种电流放大系数的定义及相互关系。短路电流放大系数的定义是集电结零偏时的输出输入电流之比,而晶体管放大区的定义却是集电结反偏。要向学生说明,集电结零偏可以得到最大输出电流,可以使对电流放大系数和电流电压方程的推导得到简化。实际上集电结零偏仍在放大区的边缘上,与集电结反偏相比,集电结零偏对电流放大系数引起的差别是微乎其微的。本节的难点是对共基极电流放大系数的理解。在共基极接法下,电流放大系数是小于1的,这意味着电流经过晶体管后反而变小了,那么晶体管还有放大能力吗?实际上,共基极电路中的晶体管是通过输入端到输出端电阻的变大而电流基本不变来实现功率放大功能的。第3.2节 均匀基区晶体管的电流放大系数本节的重点是对基区输运系数的推导和基区渡越时间的概念。基区渡越时间是一个很重要的概念。利用基区渡越时间,可以通过物理意义直接而方便地推导出基区输运系数。此外,基区渡越时间对晶体管的频率特性也有十分重要的作用。本节的难点是,若利用将基区少子浓度分布代入电流密度方程的方法来推导基区输运系数,则必须采用薄基区二极管的少子浓度分布的精确公式。如果采用薄基区二极管的少子浓度分布的近似公式,就会得到基区输运系数等于1的结果。出现这种情况的原因是,基区输运系数是用来衡量少子在基区中复合的大小的,而少子浓度分布的近似公式的近似之处恰恰就是忽略了基区中的少子复合。另一方面,若利用电荷控制法来推导基区输运系数,则可以采用薄基区二极管的电流密度的近似公式。这个例子说明,同样的近似公式,在解决同一个问题的时候,在有的条件下可以使用,在另外的条件下则不能使用。第3.3节 缓变基区晶体管的电流放大系数本节的重点是缓变基区晶体管中的基区内建电场极其对基区渡越时间和基区输运系数的作用,和发射区重掺杂效应。本节的难点是对缓变基区晶体管电流放大系数的推导和对异质结双极晶体管的理解。本节涉及的数学推导比较多,在教学中仍应遵循先作定性的物理概念的介绍,再作定量的数学公式的推导的顺序。在进行数学推导时,也应先交代清楚推导的思路和步骤。求基区输运系数的步骤是:首先,令多子电流密度为零解出基区内建电场(这个方法已经用过多次);然后,将内建电场代入基区少子电流密度方程求出注入基区的少子电流密度;第三,将基区少子电流密度公式中的积分下限由零改为基区中的任意位置x,即可解出基区少子浓度分布;第四,对基区少子浓度作积分求得基区少子电荷;最后,将基区少子电荷除以基区少子电流密度,就可得到基区输运系数。第3.4节 双极晶体管的直流电流电压方程本节的重点是埃伯斯-莫尔(Ebers-Moll)方程、共发射极输出特性曲线和基区宽度调变效应。注意埃伯斯-莫尔方程并不是仅仅用来已知两个结上的电压后求两个极上的电流。实际上,在IE、IC、VBE、VBC四个变量中已知任意两个变量,就可以利用埃伯斯-莫尔方程求出另外两个变量。输出特性方程就是利用埃伯斯-莫尔方程推导出来的。下一节要介绍的浮空电势以及饱和压降等也可以利用埃伯斯-莫尔方程推导出来。本节的难点是对倒向晶体管的理解、有关基区宽度调变效应的数学推导和对厄尔利电压的理解。为了帮助学生对厄尔利电压的数学表达式的记忆,可以将厄尔利电压的物理意义归结为:厄尔利电压是基区宽度随集电结电压的相对变化率的倒数的相反数。第3.5节 双极晶体管的反向特性本节的重点是各种反向截止电流和各种击穿电压的测量方法、BVCBO与BVCEO之间的关系。这些内容有很重要的工程实际意义,例如在设计用于共发射极接法的功率晶体管时,应该先根据电源电压确定BVCEO,再根据BVCBO与BVCEO之间的关系确定BVCBO,最后根据BVCBO确定集电区的掺杂浓度,而不应根据电源电压来直接确定集电区掺杂浓度。本节的难点是如何理解为什么雪崩倍增效应对共发射极接法的影响要远大于对共基极接法的影响。在共基极接法中,发射结上有一个反偏的浮空电势,ICBO比单独一个集电结的反向饱和电流ICS还要小,所以BVCBO比单独一个集电结的击穿电压略大。但在共发射极接法中,集电极和发射极之间的电压对集电结是反偏,对发射结则是一个很小的正偏,发射区的载流子可以源源不断地穿过基区到达集电区,使ICEO远大于单独一个集电结的反向饱和电流ICS,所以BVCEO显著小于单独一个集电结的击穿电压。这就使BVCEO显著小于BVCBO。第3.6节 基极电阻本节的重点是利用方块电阻来计算基极电阻的方法和减小基极电阻的各项措施。本节的难点是对等效电阻的理解。在计算第(2)和第(4)部分电阻时有两个困难:一是这个区域的电流方向会发生变化;二是这个区域的电流大小会发生变化。解决第一个问题的办法是,考虑到实际晶体管是很扁平的,垂直方向的电流比水平方向的电流短得多,所以可以忽略垂直方向的电流;解决第二个问题的办法就是采用等效电阻的概念,以功率相等为标准,将大小变化的电流遇到的分布电阻等效为大小固定的电流遇到的集中电阻。第3.8节 电流放大系数与频率的关系本节的重点是共发射极高频小信号短路电流放大系数随频率的变化,特征频率的定义和计算公式,以及提高特征频率的措施。本节的难点是对超相移因子的理解。与直流情况不同,对于高频小信号,当发射结刚向基区注入少子时,集电结并不能立刻得到(qb/tb)的电流,即式(3-223)是不够准确的。详细论证表明,虽然少子在基区内逗留的平均时间是基区渡越时间tb,可是在开始的被称为延迟时间的一段时间内,它们并不能被集电结取走。它们被集电结取走的平均时间实质上是基区渡越时间与延迟时间之差。这就是超相移因子的由来。第3.9节 高频小信号电流电压方程与等效电路本节的重点是高频小信号电流电压方程、混合等效电路和共发射极T形等效电路。本节的难点是高频小信号电流电压方程的推导过程。由于该推导过程比较复杂,所以要在推导前先讲清楚推导的思路与步骤:先找出晶体管中的各种高频小信号电荷,总共有四种;然后根据电荷控制方程建立起晶体管三个电极上的高频小信号电流与这些电荷之间的关系,即“电流电荷”方程;接着再推导出这些电荷与晶体管两个结上的高频小信号电压之间的关系,即“电荷电压”方程;最后将“电荷电压”方程代入“电流电荷”方程,即可得到晶体管的高频小信号电流电压方程。第3.10节 功率增益和最高振荡频率本节的重点是最大功率增益和最高振荡频率的定义及计算、提高晶体管高频优值的措施。本节的难点是如何全面理解提高晶体管高频优值的各项措施,及其所带来的负面影响。第五章 绝缘栅场效应晶体管第5.1节 MOSFET基础本节的重点是MOSFET的工作原理和MOSFET的输出特性曲线图。本节的难点是如何正确理解沟道电阻与漏源电压VDS的关系。随着VDS的增大,由漏极流向源极的沟道电流也相应增大,使得沿着沟道由源极到漏极的电势由零逐渐增大。越向漏极靠近,沟道电势越高,栅极与沟道之间的电势差就越小。沟道中的电子浓度将随栅极与沟道之间电势差的减小而减小,因此沟道厚度将随着向漏极靠近而逐渐减薄。沟道内自由电子数的减少和沟道的减薄,将使沟道电阻增大。当VDS增大到被称为饱和漏源电压VDsat的值时,沟道厚度在漏极处减薄到零,沟道在漏极处消失,该处只剩下了耗尽层,这称为沟道被夹断。第5.2节 MOSFET的阈电压阈电压是MOSFET的重要参数之一,所以关于阈电压的定义及计算的问题和关于影响阈电压的各种因素的问题不但是本节也是本章的重点。本节的难点之一是阈电压的推导过程。另一个难点是如何理解为什么当衬底表面开始发生强反型时可以忽略反型层中的电子浓度。事实上,根据强反型的定义,当衬底表面开始发生强反型时,虽然反型层中的表面电子浓度等于衬底的杂质浓度,但是由于反型层的厚度远小于耗尽区的厚度,所以反型层中的电子面密度远小于耗尽区中的电离杂质面密度。第5.3节 MOSFET的输出特性本节的重点是MOSFET非饱和区漏极电流的近似表达式、饱和漏源电压与饱和漏极电流的近似表达式、有效沟道长度调制效应。本节的难点是对缓变沟道近似的理解、非饱和区精确的直流电流电压方程的推导过程、对沟道夹断的理解、和MOSFET在饱和区的特性。缓变沟道近似是指假设垂直于沟道方向的电场梯度(Ex/x)远大于平行于沟道方向的电场梯度(Ey/y),这表示沟道厚度在沿沟道长度方向上的变化很小,故可采用一维分析。从泊松方程可知,缓变沟道近似实际上意味着认为沟道内的载流子电荷都是由栅极电压VG产生的(Ex/x)所感应出来的,而可忽略由漏极电压VD产生的(Ey/y)的作用。第5.4节 MOSFET的亚阈区导电本节的重点是亚阈区导电的性质、MOSFET亚阈漏极电流的特点、阈电压的测试方法。关于MOSFET亚阈漏极电流IDsub的特点,可以作出如下简单的归纳:当VDS不变时,IDsub与VGS呈指数关系,类似于PN结的正向伏安特性,但IDsub随VGS的增加要比PN结正向电流慢一些。当VGS不变时,IDsub随VDS的增加而增加,但当VDS大于(kT/q)的若干倍时,IDsub变得与VDS无关,即IDsub对VDS而言会发生饱和,这类似于PN结的反向伏安特性。本节的难点是对MOSFET亚阈漏极电流公式的推导过程。第5.5节 MOSFET的直流参数与温度特性本节的重点是MOSFET的通导电阻、MOSFE
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 景观照明提升工程规划设计方案(模板范文)
- 托育中心环境设计标准与实施
- 四川省仪陇中学2023-2024学年高二上学期10月月考化学题 含解析
- 安徽省名校联盟2023-2024学年高三上学期实验班12月大联考化学含解析
- 网吧圣诞节活动企划方案
- 山西工程职业学院《催化剂导论》2023-2024学年第二学期期末试卷
- 北京经济技术职业学院《汉彝翻译理论与实践》2023-2024学年第二学期期末试卷
- 浙江舟山群岛新区旅游与健康职业学院《汽轮机课程设计》2023-2024学年第二学期期末试卷
- 湖北健康职业学院《土地资源管理学》2023-2024学年第二学期期末试卷
- 河北交通职业技术学院《建筑意匠》2023-2024学年第二学期期末试卷
- 2025年中考语文古诗文默写背诵与强化训练23八年级下册第三单元课外诗词默写背诵
- 2024年社区警务规范考试题库
- 2025中考英语作文预测:19个热点话题及范文
- 基础写作-终结性考核(期末考试)-国开(SC)-参考资料
- 《十万个为什么》(米伊林)分享课课件
- 制氢技术与工艺 课件 第3-5章 天然气制氢、石油制氢、电解水制氢
- 2024秋期国家开放大学《当代中国政治制度》一平台在线形考(任务一至四)试题及答案
- 中煤陕西能源化工集团有限公司招聘笔试题库2024
- 北师大版五年级下册解方程练习100道及答案
- 2025年中考历史复习专项训练:中国近代史材料题40题(原卷版)
- 《智能机器人与传感器》教案课程单元设计07 - 接近觉(红外接近觉传感E3F-DS30C4)
评论
0/150
提交评论