




已阅读5页,还剩30页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
普通高等学校招生全国统一考试大纲的说明(文科课程标准实验2010年版)根据教育部考试中心普通高等学校招生全国统一考试大纲(文科课程标准实验2010年版)(以下简称大纲),结合基础教育的实际情况,制定了普通高等学校招生全国统一考试大纲的说明(文科课程标准实验2010年版)(以下简称说明)的数学科部分制定说明既要有利于数学新课程的改革,又要发挥数学作为基础学科的作用;既要重视考查考生对中学数学知识的掌握程度,又要注意考察考生进入高等学校继续学习的潜能;既要符合普通高中数学课程标准(实验)和普通高中课程方案(实验)的要求,符合教育部考试中心大纲的要求,符合本省(自治区、直辖市)普通高等学校招生全国统一考试工作指导方案和普通高中课程改革实验的实际情况,又要利用高考命题的导向功能,推动新课程的课堂教学改革普通高等学校招生全国统一考试是合格的高中毕业生和具有同等学力的考生参加的选拔性考试.高等学校根据考生成绩,按已确定的招生计划,德、智、体全面衡量,择优录取.因此,高考应具有较高的信度、效度,必要的区分度和适当的难度.I命题指导思想普通高等学校招生全国统一考试,是由合格的高中毕业生和具有同等学力的考生参加的选拔性考试命题注重考察考生的数学基础知识、基本技能和数学思想方法,考查考生对数学本质的理解水平,体现课程标准对知识与技能、过程与方法、情感态度与价值观等目标要求命题注重试题的创新性、多样性和选择性,具有一定的探究性和开放性既要考察考生的共同基础,又要满足不同考生的选择需求,合理分配必考和选考内容的比例对选考内容的命题应做到各选考专题的试题分值相等,力求难度均衡试卷应具有较高的信度、效度,必要的区分度与难度II考试形式与试卷结构一、考试形式考试采用闭卷、笔试形式全卷满分为150分,考试时间为120分钟二、试卷结构全卷分为第I卷和第卷两部分第I卷为12个选择题,全部为必考内容第卷为非选择题,分为必考和选考两部分必考部分题由4个填空题和5个解答题组成;选考部分由选修系列4的“几何证明选讲”、“坐标系与参数方程”、“不等式选讲”各命制1个解答题,考生从3题中任选1题作答,若多做,则按所做的第一题给分1试题类型试题分为选择题、填空题和解答题三种题型选择题是四选一型的单项选择题;填空题只要求直接填写结果,不必写出计算或推证过程;解答题包括计算题、证明题,解答题要写出文字说明、演算步骤或推证过程三种题型分数的百分比约为:选择题40左右,填空题10左右,解答题50左右2难度控制试题按其难度分为容易题、中等难度题和难题难度在0.6以上的试题为容易题,难度为0.40.6的试题是中等难度题,难度在0.4以下的试题界定为难题三种难度的试题应控制合适的分值比例,试卷总体难度适中III考核目标与要求 一、知识要求知识是指普通高中数学课程标准(实验)所规定的必修课程、选修课程系列1和系列4中的数学概念、性质、法则、公式、公理、定理以及由其内容反映的数学思想方法,还包括按照一定程序与步骤进行运算,处理数据、绘制图表等基本技能.对知识的要求由低到高分为三个层次,依次是知道(了解、模仿)、理解(独立操作)、掌握(运用、迁移),且高一层次的要求包括第一层次的要求 . 知道(了解、模仿):要求对所列知识的含义有初步的、感性的认识,知道这一知识内容是什么,按照一定的程序和步骤照样模仿,并能(或会)在有关的问题中识别和认识它. 这一层次所涉及的主要行为动词有:了解,知道、识别,模仿,会求、会解等. . 理解(独立操作):要求对所列知识内容有较深刻的理性认识,知道知识间的逻辑关系,能够对所列知识作正确的描述说明并用数学语言表达,能够利用所学的知识内容对有关问题作比较、判别、讨论,具备利用所学知识解决简单问题的能力. 这一层次所涉及的主要行为动词有:描述,说明,表达、表示,推测、想象,比较、判别、判断,初步应用等. . 掌握(运用、迁移):要求对所列的知识内容进行推导证明,能够利用所学知识对问题进行分析、研究、讨论,并且加以解决. 这一层次所涉及的主要行为动词有:掌握、导出、分析,推导、证明,研究、讨论、运用、解决问题等.二、能力要求能力是指空间想象能力、抽象概括能力、推理论证能力、运算求解能力、数据处理能力以及应用意识和创新意识. 1. 空间想象能力:能根据条件作出正确的图形,根据图形想象出直观形象;能正确地分析出图形中基本元素及其相互关系;能对图形进行分解、组合;会运用图形与图表等手段形象地揭示问题的本质. 空间想象能力是对空间形式的观察、分析、抽象的能力.主要表现为识图、画图和对图形的想象能力.识图是指观察研究所给图形中几何元素之间的相互关系;画图是指将文字语言和符号语言转化为图形语言,以及对图形添加辅助图形或对图形进行各种变换.对图形的主要包括有图想图和无图想图两种,是空间想像能力高层次的标志. 2. 抽象概括能力:对具体的、生动的实例,在抽象概括的过程中,发现研究对象的本质;从给定的大量信息材料中,概括出一些结论,并能将其用于解决问题或作出新的判断.抽象是指舍弃事物非本质的属性,揭示其本质的属性;概括是指把仅仅属于某一类对象的共同属性区分出来的思维过程.抽象和概括是相互联系的,没有抽象就不可能有概括,而概括必须在抽象的基础上得出某一观点或作出某项结论. 抽象概括能力就是从具体的、生动的实例,在抽象概括的过程中,发现研究对象的本质;从给定的大量信息材料中,概括出一些结论,并能将其应用于解决问题或作出新的判断. 3. 推理论证能力:根据已知的事实和以获得的正确数学命题,论证某一数学命题真实性的初步的推理能力.推理包括和情推理和演绎推理,论证方法既包括按形式划分的演绎法和归纳法,也包括按思考方法划分的直接证法和间接正法.一般运用和情推理进行猜想,再运用演绎推理进行证明.推理是思维的基本形式之一,它由前提和结论两部分组成,论证是由已有的正确的前提到被论证的结论正确的一连串的推理过程.推理既包括演绎推理,也包括合情推理.论证方法既包括按形式划分的演绎法和归纳法,也包括按思考方法划分的直接证法和间接证法.一般运用合情推理进行猜想,再运用演绎推理进行证明. 中学数学的推理论证能力是根据已知的事实和已获得的正确数学命题,论证某一数学命题真实性的初步的推理能力. 4. 运算求解能力:会根据法则、公式进行正确运算、变形和数据处理;能根据问题的条件寻找与设计合理、简捷的运算途径;能根据要求对数据进行估计和近似计算. 运算求解能力是思维能力和运算技能的结合.运算包括对数字的计算、估值和近似计算,对式子的组合变形与分解变形,对几何图形各几何量的计算求解等.运算能力包括分析运算条件、探究运算方向、选择运算公式、确定运算程序等一系列过程中的思维能力,也包括在实施运算过程中遇到障碍而调整运算的能力. 5. 数据处理能力:会收集、整理、分析数据,能从大量数据中抽取对研究问题有用的信息,并作出判断.数据处理能力主要依据统计或统计案例中的方法对数据进行整理、分析,并解决给定的实际问题. 6. 应用意识:能综合运用所学数学知识、思想和方法解决问题,包括解决相关学科、生产、生活中简单的数学问题;能理解对问题陈述的材料,并对所提供的信息资料进行归纳、整理和分类,将实际问题抽象为数学问题;能应用相关的数学方法解决问题并加以验证,并能用数学语言正确地表达和说明.应用的主要过程是依据现实的生活背景,提炼相关的数量关系,将现实问题转化为数学问题,构造数学模型,并加以解决. 7. 创新意识:能发现问题、提出问题,综合与灵活地应用所学的数学知识、思想方法,选择有效的方法和手段分析信息,进行独立的思考、探索和研究,提出解决问题的思路,创造性地解决问题. 创新意识是理性思维的高层次表现.对数学问题的“观察、猜测、抽象、概括、证明”,是发现问题和解决问题的重要途径,对数学知识的迁移、组合、融会的程度越高,显示出的创新意识也就越强.三、个性品质要求个性品质是指考生个体的情感、态度和价值观.要求考生具有一定的数学视野,认识数学的科学价值和人文价值,崇尚数学的理性精神,形成审慎的思维习惯,体会数学的美学意义. 要求考生克服紧张情绪,以平和的心态参加考试,合理支配考试时间,以实事求是的科学态度解答试题,树立战胜困难的信心,体现锲而不舍的精神.四、考查要求数学学科的系统性和严密性决定了数学知识之间深刻的内在联系,包括各部分知识在各自发展过程中的纵向联系和各部分知识之间的横向联系,要善于从本质上抓住这些联系,进而通过分类、梳理、综合,构建数学试卷的结构框架.对数学基础知识的考查,要求既要全面又要突出重点,对于支撑学科知识体系的重点内容,考察时要保持较高的比例,构成数学试卷的主体要注重学科的内在联系和知识的综合性,不刻意追求知识的覆盖面.要从学科的整体高度和思维价值的高度考虑问题,在知识网络交汇点设计试题,使对数学基础知识的考查达到必要的深度.数学思想和方法是数学知识在更高层次上的抽象和概括蕴含在数学知识发生、发展和应用的过程中,能够迁移并广泛应用于相关学科和社会生活因此,对数学思想和方法的考查必然要与数学知识的考查相结合相结合进行,通过数学知识的考查,反映考生对数学思想和方法理解和掌握的程度.考察时要从学科整体意义和思想价值立意,要有明确的目的,加强针对性,注重通性通法,淡化特殊技巧,有效地检测考生对中学数学知识中所蕴含的数学思想和方法的掌握程度数学是一门思维的科学,是培养理性思维的重要载体通过空间想象、直觉猜想、归纳抽象、符号表达、运算推理、演绎证明和模式构建等诸方面,对客观事物中的数量关系和数学模式做出思考和判断,形成和发展理性思维,构成数学能力的主体 对能力的考查,强调“以能力立意”,就是以数学知识为载体,从问题入手,把握学科的整体意义,用统一的数学观点组织材料,对知识的考查侧重于理解和应用,尤其是综合和灵活的应用,以此来检测考生将知识迁移到不同情境中去的能力,从而检测出考生个体理性思维的广度和深度以及进一步学习的潜能. 对能力的考查,以思维能力为核心,全面考查各种能力,强调综合性、应用性,切合考生实际运算能力是思维能力和运算技能的结合,它不仅包括数的运算,还包括式的运算对考生运算能力的考查主要是对算理和逻辑推理的考查,以含字母的式的运算为主空间想象能力是对空间形式的观察、分析、抽象的能力考察时注意与推理相结合实践能力在考试中表现为解答应用问题,考查的重点是客观事物的数字化,这个过程主要是依据现实的生活背景,提炼相关的数量关系,构建数学模型,将现实问题转化为数学问题,并加以解决命题时要坚持“贴近生活,背景公平,控制难度”的原则,要把握好提出问题所涉及的数学知识和方法的深度和广度,要结合中学数学教学的实际,让数学应用问题的难度更加符合考生的水平引导考生自觉地置身于现实社会的大环境中,关心自己身边的数学问题,促使学生在学习和实践中形成和发展数学应用的意识创新意识和创造能力是理性思维的高层次表现在数学的学习和研究过程中,知识的迁移、组合、融会的程度越高,展示能力的区域就越宽泛,显现出的创造意识也就越强命题时要注意试题的多样化,设计考查数学主体内容,体现数学素质的题目,反映数、形运动变化的题目,研究型、探索性或开放型的题目让考生独立思考,自主探索,发挥主观能动性,研究问题的本质、寻求合适的解题工具,梳理解题程序,为考生展现创新意识、发挥创造能力创设广阔的空间IV考试内容与要求一、必考内容与要求1集合 (1)集合的含义与表示 了解集合的含义、元素与集合的“属于”关系. 能用自然语言、图形语言、集合语言(列举法或描述法)描述不同的具体问题. (2)集合间的基本关系 理解集合之间包含与相等的含义,能识别给定集合的子集. 在具体情境中,了解全集与空集的含义. (3)集合的基本运算 理解两个集合的并集与交集的含义,会求两个简单集合的并集与交集. 理解在给定集合中一个子集的补集的含义,会求给定子集的补集. 能使用韦恩(Venn)图表达集合间的基本关系及集合的基本运算.2函数概念与基本初等函数(指数函数、对数函数、幂函数) (1)函数 了解构成函数的要素,会求一些简单函数的定义域和值域;了解映射的概念. 在实际情境中,会根据不同的需要选择恰当的方法(如图像法、列表法、解析法)表示函数. 了解简单的分段函数,并能简单应用(函数分段不超过三段). 理解函数的单调性、最大值、最小值及其几何意义;结合具体函数,了解函数奇偶性的含义. 会运用基本初等函数图像理解和研究分析函数的性质. (2)指数函数 了解指数函数模型的实际背景. 理解有理指数幂的含义,了解实数指数幂的意义,掌握幂的运算. 理解指数函数的概念,并理解指数函数的单调性,掌握指数函数图像通过的特殊点会画底数为、的指数函数的图象 体会知道指数函数是一类重要的函数模型. (3)对数函数 理解对数的概念及其运算性质,知道用换底公式能将一般对数转化成自然对数或常用对数;了解对数在简化运算中的作用. 理解对数函数的概念;理解对数函数的单调性,掌握函数图像通过的特殊点. 会画底数为、的对数函数的图象 体会知道对数函数是一类重要的函数模型; 了解指数函数与对数函数互为反函数.(4)幂函数 了解幂函数的概念. 结合函数、的图象,了解它们的变化情况.(5)函数与方程 结合二次函数的图象,了解函数的零点与方程根的联系,判断一元二次方程根的存在性及根的个数. 根据具体函数的图像,能够用二分法求相应方程的近似解.(6)函数模型及其应用 了解指数函数、对数函数以及幂函数的增长特征,结合具体实例体会知道直线上升、指数增长、对数增长等不同函数类型增长的含义. 了解函数模型(如指数函数、对数函数、幂函数、分段函数等在社会生活中普遍使用的函数模型)的广泛应用.3立体几何初步(1)空间几何体 认识柱、锥、台、球及其简单组合体的结构特征,并能运用这些特征描述现实生活中简单物体的结构. 能画出简单空间图形(长方体、球、圆柱、圆锥、棱柱等的简易组合)的三视图,能识别上述的三视图所表示的立体模型,会用斜二测法画出它们的直观图. 会用平行投影与中心投影两种方法,画出简单空间图形的三视图与直观图,了解空间图形的不同表示形式. 会画某些建筑物的视图与直观图(在不影响图形特征的基础上,尺寸、线条等不作严格要求). 了解球、棱柱、棱锥、台的表面积和体积的计算公式(不要求记忆公式).(2)点、直线、平面之间的位置关系 理解空间直线、平面位置关系的定义,并了解如下可以作为推理依据的公理和定理.公理1:如果一条直线上的两点在一个平面内,那么这条直线上所有的点在此平面内.公理2:过不在同一条直线上的三点,有且只有一个平面.公理3:如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线.公理4:平行于同一条直线的两条直线互相平行.定理:空间中如果一个角的两边与另一个角的两边分别平行,那么这两个角相等或互补. 以立体几何的上述定义、公理和定理为出发点,认识和理解空间中线面平行、垂直的有关性质与判定定理.理解以下判定定理.如果平面外一条直线与此平面内的一条直线平行,那么该直线与此平面平行.如果一个平面内的两条相交直线与另一个平面都平行,那么这两个平面平行.如果一条直线与一个平面内的两条相交直线都垂直,那么该直线与此平面垂直.如果一个平面经过另一个平面的垂线,那么这两个平面互相垂直.理解以下性质定理,并能够证明.如果一条直线与一个平面平行,经过该直线的任一个平面与此平面相交,那么这条直线就和交线平行.如果两个平行平面同时和第三个平面相交,那么它们的交线相互平行.垂直于同一个平面的两条直线平行.如果两个平面垂直,那么一个平面内垂直于它们交线的直线与另一个平面垂直. 能运用公理、定理和已获得的结论证明一些空间图形的位置关系的简单命题.4平面解析几何初步(1)直线与方程 在平面直角坐标系中,结合具体图形,确定直线位置的几何要素. 理解直线的倾斜角和斜率的概念,掌握过两点的直线斜率的计算公式. 能根据两条直线的斜率判定这两条直线平行或垂直. 掌握确定直线位置的几何要素,掌握直线方程的三几种形式(点斜式、两点式及一般式),了解斜截式与一次函数的关系. 能用解方程组的方法求两相交直线的交点坐标. 掌握两点间的距离公式、点到直线的距离公式,会求两条平行直线间的距离.(2)圆与方程 掌握确定圆的几何要素,掌握圆的标准方程与一般方程. 能根据给定直线、圆的方程,判断直线与圆的位置关系;能根据给定两个圆的方程,判断两圆的位置关系. 能用直线和圆的方程解决一些简单的问题. 初步了解用代数方法处理几何问题的思想.(3)空间直角坐标系 了解空间直角坐标系,会用空间直角坐标表示点的位置. 会简单应用推导空间两点间的距离公式.5算法初步(1)算法的含义、程序框图 了解算法的含义,了解算法的思想. 理解程序框图的三种基本逻辑结构:顺序、条件分支、循环.(2)基本算法语句理解几种基本算法语句输入语句、输出语句、赋值语句、条件语句、循环语句的含义.6统计 (1)随机抽样 理解随机抽样的必要性和重要性. 会用简单随机抽样方法从总体中抽取样本;了解分层抽样和系统抽样方法. (2)用样本估计总体 了解分布的意义和作用,能根据会列频率分布表,会画频率分布直方图、频率折线图、茎叶图,体会理解它们各自的特点. 理解样本数据标准差的意义和作用,会计算数据标准差.(不要求记忆公式) 能从样本数据中提取基本的数字特征(如平均数、标准差),并作出合理的解释. 会用样本的频率分布估计总体分布,会用样本的基本数字特征估计总体的基本数字特征,理解用样本估计总体的思想. 会用随机抽样的基本方法和样本估计总体的思想,解决一些简单的实际问题.(3)变量的相关性 会作两个有关联变量数据的散点图,并会利用散点图认识变量间的相关关系. 了解最小二乘法的思想,能根据给出的线性回归方程系数公式建立线性回归方程. (线性回归方程系数公式不要求记忆)7概率(1)事件与概率 了解随机事件发生的不确定性和频率的稳定性,了解概率的意义,了解频率与概率的区别. 了解两个互斥事件的概率加法公式.(2)古典概型理解古典概型及其概率计算公式.会用列举法计算一些随机事件所含的基本事件数及事件发生的概率.(3)随机数与几何概型了解随机数的意义,能运用模拟方法估计概率.了解几何概型的意义.8基本初等函数(三角函数)(1)任意角的概念、弧度制 了解任意角的概念和弧度制概念. 了解弧度制概念,能进行弧度与角度的互化.(2)三角函数 理解任意角三角函数(正弦、余弦、正切)的定义. 能利用单位圆中的三角函数线推导出,的正弦、余弦、正切的诱导公式,能画出,的图像,了解三角函数的周期性. 理解正弦函数、余弦函数在区间上的性质(如单调性、最大和最小值、图象与轴交点等).理解正切函数在区间内的单调性. 理解同角三角函数的基本关系式:, 了解函数的物理意义;能画出的图像,了解参数对函数图像变化的影响. 了解三角函数是描述周期变化现象的重要函数模型,会用三角函数解决一些简单实际问题. 体会三角函数是描述周期变化现象的重要函数模型.9平面向量(1)平面向量的实际背景及基本概念了解向量的实际背景.理解平面向量的概念及向量相等的含义.理解向量的几何表示.(2)向量的线性运算 掌握向量加法、减法的运算,并理解其几何意义. 掌握向量数乘的运算及其几何意义,理解两个向量共线的含义. 了解向量线性运算的性质及其几何意义.(3)平面向量的基本定理及坐标表示 了解平面向量的基本定理及其意义. 掌握平面向量的正交分解及其坐标表示. 会用坐标表示平面向量的加法、减法与数乘运算. 理解用坐标表示的平面向量共线的条件.(4)平面向量的数量积 理解平面向量数量积的含义及其物理意义. 了解平面向量的数量积与向量投影的关系. 掌握数量积的坐标表达式,会进行平面向量数量积的运算. 能运用数量积表示两个向量的夹角,会用数量积判断两个平面向量的垂直关系.(5)向量的应用会用向量方法解决某些简单的平面几何问题.会用向量方法解决简单的力学问题与其他一些实际问题.10三角恒等变换(1)两角和与差的三角函数公式 会用向量的数量积推导出两角差的余弦公式. 会能利用两角差的余弦公式导出两角差的正弦、正切公式. 会能利用两角差的余弦公式导出两角和的正弦、余弦、正切公式,导出二倍角的正弦、余弦、正切公式,了解它们的内在联系.(2)简单的三角恒等变换能运用上述公式进行简单的恒等变换(包括导出积化和差、和差化积、半角公式,但对这三组公式不要求记忆).11解三角形(1)正弦定理和余弦定理掌握正弦定理、余弦定理,并能解决一些简单的三角形度量问题. (2) 应用能够运用正弦定理、余弦定理等知识和方法解决一些与测量和几何计算有关的实际问题.12数列(1)数列的概念和简单表示法了解数列的概念和几种简单的表示方法(列表、图像、通项公式).了解数列是自变量为正整数的一类特殊函数.(2)等差数列、等比数列 理解等差数列、等比数列的概念. 掌握等差数列、等比数列的通项公式与前项和公式. 能在具体的问题情境中,识别数列的等差关系或等比关系,并能用等差数列、等比数列有关知识解决相应的问题. 了解等差数列与一次函数、等比数列与指数函数的关系.13不等式(1)不等关系了解现实世界和日常生活中存在着大量的不等关系,了解不等式(组)的实际背景.(2)一元二次不等式 会从实际问题的情境中抽象出一元二次不等式模型. 通过函数图像了解一元二次不等式与相应的二次函数、一元二次方程的联系. 会解一元二次不等式,对给定的一元二次不等式,会设计求解的程序框图.(3)二元一次不等式组与简单线性规划问题 会从实际情境中抽象出二元一次不等式组. 了解二元一次不等式的几何意义,能用平面区域表示二元一次不等式组. 会从实际情境中抽象出一些简单的二元线性规划问题,并能加以解决.(4)基本不等式: 了解基本不等式的证明过程. 会用基本不等式解决简单的最大(小)值问题.14常用逻辑用语(1)命题及其关系 理解命题的概念.了解“若,则”形式的命题及其逆命题、否命题与逆否命题,会分析四种命题的相互关系. 理解必要条件、充分条件与充要条件的意义.(2)简单的逻辑联结词了解逻辑联结词“或”、“且”、“非”的含义.(3)全称量词与存在量词 理解全称量词与存在量词的意义. 能正确地对含有一个量词的命题进行否定.15圆锥曲线与方程(1)圆锥曲线 了解圆锥曲线的实际背景,了解圆锥曲线在刻画现实世界和解决实际问题中的作用. 掌握椭圆、抛物线的定义、几何图形、标准方程及简单性质. (范围、对称性、顶点、离心率). 了解双曲线的定义、几何图形和标准方程,知道它的简单几何性质. (范围、对称性、顶点、离心率、双曲线的渐近线). 了解圆锥曲线的简单应用. 理解数形结合的思想.(2)曲线与方程了解方程的曲线与曲线的方程的对应关系.16空间向量与立体几何(1)空间向量及其运算 了解空间向量的概念,了解空间向量的基本定理及其意义,掌握空间向量的正交分解及其坐标表示. 掌握空间向量的线性运算及其坐标表示. 掌握空间向量的数量积及其坐标表示,能运用向量的数量积判断向量的共线与垂直.(2)空间向量的应用 理解直线的方向向量与平面的法向量. 能用向量语言表述直线与直线、直线与平面、平面与平面的垂直、平行关系. 能用向量方法证明立体几何中有关直线和平面位置关系的一些定理(包括三垂线定理). 能用向量方法解决直线与直线、直线与平面、平面与平面的夹角的计算问题,了解向量方法在研究几何问题中的应用.17导数及其应用(1)导数概念及其几何意义 了解导数概念的实际背景. 通过函数图像直观理解导数的几何意义.(2)导数的运算 能根据导数定义,求函数(为常数), ,的导数. 能利用下面给出的基本初等函数的导数公式和导数的四则运算法则求简单函数的导数.并了解复合函数的求导法则,能求简单复合函数(仅限于形如的复合函数)的导数常见基本初等函数的导数公式: (为常数);(); ;.常用的导数运算法则:法则1;法则2;法则3 (3)导数在研究函数中的应用 了解函数单调性和导数的关系;能利用导数研究函数的单调性,会求函数的单调区间(其中多项式函数一般不超过三次). 了解函数在某点取得极值的必要条件和充分条件;会用导数求函数的极大值、极小值(其中多项式函数一般不超过三次);会求闭区间上函数的最大值、最小值(其中多项式函数一般不超过三次).(4)生活中的优化问题.会利用导数解决某些实际问题.(5)定积分与微积分基本定理 了解定积分的实际背景,了解定积分的基本思想,了解定积分的概念. 了解微积分基本定理的含义.18推理与证明(1)合情推理与演绎推理 了解合情推理的含义,能利用归纳和类比等进行简单的推理,体会了解合情推理在数学发现中的作用. 了解演绎推理的重要性含义,了解合情推理和演绎推理的联系和差异掌握演绎推理的“三段论”基本模式,并能运用“三段论”它们进行一些简单演绎推理. 了解合情推理和演绎推理之间的联系和差异.(2)直接证明与间接证明 了解直接证明的两种基本方法:分析法和综合法;了解分析法和综合法的思考过程、特点. 了解间接证明的一种基本方法反证法;了解反证法的思考过程、特点.(3)数学归纳法了解数学归纳法的原理,能用数学归纳法证明一些简单的数学命题.19数系的扩充与复数的引入(1)复数的概念理解复数的基本概念.理解复数相等的充要条件. 了解复数的代数表示法及其几何意义.(2)复数的四则运算会进行复数代数形式的四则运算.了解两个复数代数形式的加、减运算的几何意义.20计数原理(1)分类加法计数原理、分步乘法计数原理理解分类加法计数原理和分步乘法计数原理,能正确区分“类”和“步”;能利会用分类加法计数原理或分步乘法计数原理分析和解决一些简单的实际问题.(2)排列与组合理解排列、组合的概念.理解能利用计数原理推导排列数公式、组合数公式.能用两个公式解决一些简单的实际问题.(3)二项式定理能用计数原理证明二项式定理.会用二项式定理解决与二项展开式有关的简单问题. 21概率与统计(1)概率 理解取有限个值的离散型随机变量及其分布列的概念,认识了解分布列对于刻画随机现象的重要性.会求某些取有限个值的离散型随机变量的分布列 了理解超几何分布及其导出过程,并能进行简单的应用. 了解条件概率和两个事件相互独立的概念,理解次独立重复试验的模型及二项分布,并能解决一些简单的实际问题. 理解取有限个值的离散型随机变量均值、方差的概念,会求能计算简单离散型随机变量的均值、方差,并能利用离散型随机变量均值、方差解决一些实际问题. 借助直观利用实际问题的直方图,认识了解正态分布曲线的特点及曲线所表示的意义.(2)统计案例了解下列一些常见的统计方法,并能应用这些方法解决一些实际问题.独立性检验了解独立性检验(只要求22列联表)的基本思想、方法及其简单应用.回归分析了解回归的基本思想、方法及其简单应用.二、选考内容与要求1几何证明选讲(1)了解平行线截割定理,会证直角三角形射影定理.(2)会证圆周角定理、圆的切线的判定定理及性质定理.(3)会证相交弦定理、圆内接四边形的性质定理与判定定理、切割线定理.(4)了解平行投影的含义,通过圆柱与平面的位置关系,了解平行投影;会证平面与圆柱面的截线是椭圆(特殊情形是圆).(5)了解下面定理:定理在空间中,取直线为轴,直线与相交于点,其夹角为,围绕旋转得到以为顶点,为母线的圆锥面,任取平面,若它与轴交角为(与平行,记),则:,平面与圆锥的交线为椭圆;,平面与圆锥的交线为抛物线;,平面与圆锥的交线为双曲线.(6)会利用丹迪林()双球(如图所示,这两个球位于圆锥的内部,一个位于平面的上方,一个位于平面的下方,并且与平面及圆锥面均相切,其切点分别为、)证明上述定理情形:当时,平面与圆锥的交线为椭圆.(图中上、下两球与圆锥面相切的切点分别为点和点,线段与平面相交于点.)(7)会证明以下结果:在(6)中,一个丹迪林球与圆锥面的交线为一个圆,并与圆锥的底面平行,记这个圆所在平面为;如果平面与平面的交线为,在(5)中椭圆上任取一点A,该丹迪林球与平面的切点为F,则点A到点F的距离与点A到直线m的距离比是小于1的常数e.(称点F为这个椭圆的焦点,直线m为椭圆的准线,常数e为离心率.)(8)了解定理(5)中的证明,了解当无限接近时,平面的极限结果.2.坐标系与参数方程(1)坐标系 了理解坐标系的作用. 了解在平面直角坐标系伸缩变换作用下平面图形的变化情况. 了解极坐标的基本概念,会能在极坐标系中用极坐标刻画表示点的位置,理解在极坐标系和平面直角坐标系中表示点的位置的区别,能进行极坐标和直角坐标的互化. 能在极坐标系中给出简单图形(如过极点的直线、过极点或圆心在极点的圆)表示的极坐标方程.通过比较这些图形在极坐标系和平面直角坐标系中的方程,理解用方程表示平面图形时选择适当坐标系的意义. 了解柱坐标系、球坐标系中表示空间中点的位置的方法,并与空间直角坐标系中表示点的位置的方法相比较,了解它们的区别.(2)参数方程 了解参数方程,了解参数的意义. 能选择适当的参数写出直线、圆和椭圆圆锥曲线的参数方程. 了解平摆线、渐开线的生成过程,并能推导出它们的参数方程. 了解其他摆线的生成过程,了解摆线在实际中的应用,了解摆线在表示行星运动轨道中的作用.3不等式选讲(1)理解绝对值的几何意义,并了解下列不等式成立的几何意义及取等号的条件能利用含绝对值不等式的几何意义证明以下不等式:;会利用绝对值的几何意义求解以下类型的不等式:;(2)了解下列柯西不等式的几种不同形式,理解它们的几何意义,并会证明. 柯西不等式的向量形式:; ; (通常称为平面三角不等式)(3)会用参数配方法讨论柯西不等式的一般情形:(4)会用向量递归方法讨论排序不等式:(5)了解数学归纳法的原理及其使用范围,会用数学归纳法证明一些简单问题(6)会用数学归纳法证明贝努利不等式: (,为大于的正整数),了解当为大于1的实数时贝努利不等式也成立(7)会用上述不等式证明一些简单问题。能够利用平均值不等式、柯西不等式求一些特定函数的极值(8)通过一些简单问题了解证明不等式的基本方法;比较法、综合法、分析法、反证法、放缩法题型示例一、 必考内容题型示例(一) 选择题1已知函数的定义域,的定义域为,则=( )ABCD2已知命题,则(),3函数在区间的简图是()4下图为一个几何体的三视图,尺寸如图所示,则该几何体的表面积(不考虑接触点)为()5已知是等差数列,其前10项和,则其公差()6已知,成等差数列,成等比数列,则的最小值是()7右面的程序框图,如果输入三个实数a、b、c,要求输出这三个数中最大的数,那么在空白的判断框中,应该填入下面四个选项中的( )ABCD是否开始输入a,b,cx=abx输出x结束x=bx=c否是8若,则的值为()9设,则使函数的定义域为且为奇函数的所有值为( )A,B,C,D,10已知圆,那么两圆位置关系是()A内含B内切C相交D外切11在平面直角坐标系中,双曲线的中心在坐标原点,焦点在轴上,一条渐近线的方程为,则它的离心率为()12已知平面向量,则向量()13曲线在点处的切线与坐标轴所围三角形的面积为()14甲、乙、丙三名射箭运动员在某次测试中各射箭20次,三人的测试成绩如下表甲的成绩环数78910频数5555乙的成绩环数78910频数6446丙的成绩环数78910频数4664分别表示甲、乙、丙三名运动员这次测试成绩的标准差,则有() 15下列各小题中,是的充要条件的是( )或;有两个不同的零点;是偶函数;ABCD(二)填空题1设函数为奇函数,则2函数的图像与函数的图像关于直线对称,则_3是虚数单位,(用的形式表示,)4某校安排5个班到4个工厂进行社会实践,每个班去一个工厂,每个工厂至少安排一个班,不同的安排方法共有种(用数字作答)设是不等式组表示的平面区域,则中的点到直线距离的最大值是 6将一颗骰子连续抛掷三次,它落地时向上的点数依次成等差数列的概率为_(三)解答题记关于的不等式的解集为,不等式的解集为(I)若,求;(II)若,求正数的取值范围2 如图,测量河对岸的塔高时,可以选与塔底在同一水平面内的两个测点与现测得,并在点测得塔顶的仰角为,求塔高3设向量,()若,求的值;()求函数的最大值及相应的值 4如图,四棱锥中,底面是矩形,底面,点是的中点,点在边上移动()当点为中点时,试判断与平面的位置关系,并说明理由;()证明:无论点在边的何处,都有()当等于何值时,与平面所成角的大小为5 如图,在三棱锥中,侧面与侧面均为等边三角形,为中点()证明:平面;()求二面角的余弦值6在平面直角坐标系中,经过点且斜率为的直线与椭圆有两个不同的交点和()求的取值范围;()设椭圆与轴正半轴、轴正半轴的交点分别为,是否存在常数,使得向量与共线?如果存在,求值;如果不存在,请说明理由7已知点为圆的圆心,是圆上的动点,点在圆的半径上,且有点和上的点,满足,()当点在圆上运动时,求点的轨迹方程; ()若直线与()中所求点的轨迹交于不同两点、,是坐标原点,且时,求的取值范围.8如图所示的三个游戏盘中(图(1)是正方形,图(2)是半径之比为的两个同心圆,图(3)是正六边形)各有一个玻璃小球,依次摇动三个游戏盘后,将它们水平放置,就完成了一局游戏。()一局游戏后,这三个盘中的小球都停在阴影部分的概率是多少?()用随机变量表示一局游戏后小球停在阴影部分的个数与小球没有停在阴影部分的个数之差的绝对值,求随机变量的分布列及数学期望9班主任为了对本班学生的考试成绩进行分析,决定从全班位女同学,位男同学中随机抽取一个容量为的样本进行分析()如果按性别比例分层抽样,可以得到多少个不同的样本?(只要求写出算式即可,不必计算出结果)()随机抽取位,他们的数学分数从小到大排序是:60、65、70、75、80、85、90、95,物理分数从小到大排序是:72、77、80、84、88、90、93、95(i)若规定分以上(包括分)为优秀,求这位同学中恰有位同学的数学和物理分数均为优秀的概率;(ii)若这位同学的数学、物理分数事实上对应如下表:学生编号12345678数学分数6065707580859095物理分数7277808488909395根据上表数据,用变量与的相关系数或散点图说明物理成绩与数学成绩之间线性相关关系的强弱如果有较强的线性关系,求与的线性回归方程(系数精确到);如果不具有线性相关关系,说明理由参考公式:相关系数;回归直线方程是:其中, 是与对应的回归估计值 参考数据:,10在数列中,()证明数列是等比数列;()求数列的通项公式11已知数列前项和为,函数(其中、均为常数,且),当时,函数取得极小值点均在函数的图象上(其中是函数的导函数)()求的值;()求数列的通项公式12设函数()讨论的单调性;()求在区间上的最大值和最小值二、选考内容题型示例1如图,已知是的直径,、为上的点,是的角平分线,过点作的延长线于点,垂足为点()求证:是的切线;()求证:2如图,已知是的切线,为切点,是的割线,与交于两点,圆心在的内部,点是的中点()证明:、四点共圆;()求的大小 3已知圆锥曲线(是参数)和定点,、是圆锥曲线的左右焦点()求经过点垂直于直线的直线的参数方程;()以坐标原点为极点,轴的正半轴为极轴建立极坐标系,求直线的极坐标方程4 和的极坐标方程分别为()把和的极坐标方程化为直角坐标方程;()求经过,交点的直线的直角坐标方程5设函数(I)解不等式;(II)求函数的最小值6对于任意的实数()和,不等
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 国防教育服务及军事技能训练合同4篇
- 改建硫酸工程方案模板(3篇)
- 钉钉工程方案流程(3篇)
- 球车安全驾驶培训内容课件
- 安全教训培训台账课件
- 安全教育集中培训内容
- 安全教育管理培训心得课件
- 培养高中生阅读质疑能力“三落点”
- 房屋安全加固工程方案(3篇)
- 安全教育正确灭火课件
- 花坛景观设计59课件讲解
- 主要诊断及主要手术的选择原则
- 2024年急危重症患者鼻空肠营养管管理专家共识
- 医学教材 《中国高尿酸血症相关疾病诊疗多学科专家共识(2023年版)》解读课件
- 公转私借款合同书模板
- 2024版债务处理咨询服务协议
- 《我们走在大路上》 课件 2024-2025学年湘教版初中美术七年级上册
- 2024年八年级物理上册必背考点113条背记手册
- 供应链安全风险评估
- 2024年国家义务教育质量监测体育与健康学科成绩提升培训会
- 移动公司个人求职简历模板
评论
0/150
提交评论