




已阅读5页,还剩2页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
三角形内角和的教学设计教学目标:1、知识目标:通过操作活动探索发现和验证“三角形的内角和是180度”的规律。利用这个规律开拓思维解题2、能力目标:在操作活动中,培养学生的合作能力、动手实践能力,发展学生的空间观念。并运用新知识解决问题。3.情感态度与价值观:使学生有科学实验态度,激发学生主动学习数学的兴趣,体验数学学习成功的喜悦。教材分析三角形的内角和是三角形的一个重要特征。本课是安排在学习三角形的概念及分类之后进行的,它是学生以后学习多边形的内角和及解决其它实际问题的基础。学生在掌握知识方面:已经掌握了三角形的分类,比较熟悉平角等有关知识;能力方面:经过学习,已具备了初步的动手操作能力和主动探究能力以及合作学习的习惯。因此,教材很重视知识的探索与发现,安排了一系列的实验操作活动。教材呈现教学内容时,不但重视体现知识的形成过程,而且注意留给学生充分进行自主探索和交流的空间,为教师灵活组织教学提供了清晰的思路。教学重点与难点:教学重点:探究发现和验证“三角形的内角和180度”这一规律的过程,并归纳总结出规律。教学难点:对不同探究方法的指导和学生对规律的灵活应用。教具准备:教具学具准备:老师准备课件、学生准备不同类型的三角形各一个,量角器。教学方法问题解决教学法、讨论合作交流法。本节课是在建构主义学习理论指导下,从学生已有知识经验出发,充分发挥学生主体、教师主导的作用。采用启发引导,迁移建构、学生动手操作、合作讨论交流、演示及练习反馈相结合的方法教学过程:一、 创设情景,引出问题1、猜谜语:(课件)形状似座山,稳定性能坚。 三竿首尾连,学问不简单。 (打一图形名称)三角形 而这节课我们来研究三角形内角和(板书)2、在小学我们已经知道,任意一个三角形的内角和等于180.但为什么是180呢?我们没去研究,本节课就来看看老师:首先看一个小故事,有两个三角形兄弟,哥哥体型比较大,弟弟体形比较小。所以哥哥总说说他的内角和度数比弟弟的大。弟弟当然不服啦,就让我们大家评评理。同学们,大家说该如何评理呢?有什么简单的办法验证你的观点?学生:三角形内角和等于180。师:拿出准备好的白纸和两个剪好的三角形,纸上画一个三角形(要与剪好的三角形一样大小),同学们以本班组分为四组交流,通过剪拼说明三角形三个内角和是180 , 试一试有几种拼合法? 二巩固与探索在拼之前呢,我们先来回顾一下(1)什么是三角形内角(课件)三角形里面的三个角都是三角形的内角。为了方便研究,我们把每个三角形的3个内角分别标上A、B、。(2)三角形内角和师:内角和指的是什么?生:三角形的三个角的度数的和,就是三角形的内角和。(多让几个学生说一说)2、猜一猜。师:这个三角形的内角和是多少度?师:是不是所有的三角形的内角和都是180呢?你能肯定吗?预设1师:大家意见不统一,我们得想个办法验证三角形的内角和是多少?可以用什么方法验证呢?3操作验证:小组合作。选1个自己喜欢的三角形,选喜欢的方法进行验证。4学生汇报。(1)教师:汇报的测量结果,有的是180,有的不是180,为什么会出现这种情况?师:有没有别的方法验证。(2)剪拼、学生上台演示。B、请大家四人小组合作,用他的方法验证其它三角形。C、展示学生作品。D、师课件展示。(鼓励学生积极开动脑筋,从不同途径探究解决问题的方法,同时给予学生足够的时间和空间,不断让每个学生自己参与,而且注重让学生在经历观察、操作、分析、推理和想像活动过程中解决问题,发展空间观念和论证推理能力。)(4)数学文化师:除了我们这节课大家想到的方法,还有很多方法也能验证三角形的内角和是180早在300多年前就有一个科学家,他在12岁时就验证了任何三角形的内角和都是180(课件)帕斯卡(BlaisePascal,16231662) ,法国数学家、物理学家、近代概率论的奠基者。早在300多年前这位法国著名的科学家就已经发现了任何三角形的内角和是180度,而他当时才12岁。5、巩固知识。(1)师:你对三角形内角和是多少度还有疑问吗?现在我们可以肯定的说:三角形的内角和是多少度?那我们怎么证明呢下面我将展示例题,让学生自己下探索。然后由我用课件演示解题过程老师:(1)我们学过有关180的公式、概念和定理有哪些?(2)由刚才的拼合法,能否过某一个顶点引辅助线,利用平行线的性质,通过迁移内角到同一个顶点,再根据平角定义完成证明证法一:证明:过A作lBCB=1 (两直线平行,内错角相等)C=3(两直线平行,内错角相等又1+2+3=180(平角的定义)B+C+2=180即:B+C+BAC=180证法二;提示可延长BC到D,过C点作CE AB也可得解老师;从上面两种证明方法中同学能否找到它们的异同点?它们的思路是否一致呢? 课件出示练习四、巩固新知。例:如图C岛在A岛的北偏东50 方向,B岛在A岛的北偏东80 方向,C岛在B岛的北偏西40 方向,从C岛看A,B两岛的视角 ACB是多少度?设计问题:1.A、B、C三点是否在同一直线上?它们能否形成三角形2.确定东西南北方向,再者如何理解C岛在A岛的北偏东50 , C岛在B岛的北偏西40 , B岛在A岛的北偏东80 ?3.由已知条件能推算出 CAB吗?由ADBE,图中的同位角、内错角或同旁内角有什么特点?能否利用这些条件推算出 ABC呢?五、回顾与小结:1本节你学习了什么内容?2从本节的证明过程中你学习了一种什么样的证明方法;3在利用三角形的内角和定理解题时,要注意哪些问题。六布置作业1三角形中,若最大内角等于最小内角的2倍,最大内角又比另一个内角大20,则此三角形的最小内角的度数是_2在ABC中,若A+B=C,则此三角形为_三角形;若A+BC,则此三角形是_三角形3在ABC中,B,C的平分线交于点O,若BOC=132,则A=_度4.在ABC中,已知BA=5,CB=20,求三角形各内角的度数七总结回顾学习内容学会反思鼓励学生在独立思考的基础上,积极地参与到对数学问题的讨论中来,敢于发表自己
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年下半年吉林延边公交集团公开招聘10人易考易错模拟试题(共500题)试卷后附参考答案-1
- 高铁制梁场复垦施工合同(3篇)
- 高速公路改造合同模板(3篇)
- 安全施工考试题及答案
- 高明租房合同台账模板(3篇)
- 事业单位聘用合同解除与竞业限制期限合同
- 2025河南公务员面试题及答案
- 《中小学校学生家长参与学校课程改革协议》
- 股权代持解除与控制权恢复-法律程序与执行合同
- 中央预算单位公务卡支付结算与财务管理合作协议
- 中职女生健康教育
- 单位集中物业管理保洁服务方案方案投标文件(技术方案)
- 外事礼仪培训课程
- 2025至2030中国玄武岩纤维行业发展趋势分析与未来投资战略咨询研究报告
- 作业托管学生管理制度
- 《机械制图》机械工业出版社 第一章 制图基本知识与技能 章节过关卷(原卷版)
- 公安接警面试题及答案
- 动力电池回收网络设计-洞察及研究
- 中国心血管病一级预防指南解读
- 贝壳融合训acn试题及答案
- 鸿蒙试题及答案
评论
0/150
提交评论