数学北师大版八年级下册平行四边形的性质1 教案.docx_第1页
数学北师大版八年级下册平行四边形的性质1 教案.docx_第2页
数学北师大版八年级下册平行四边形的性质1 教案.docx_第3页
数学北师大版八年级下册平行四边形的性质1 教案.docx_第4页
数学北师大版八年级下册平行四边形的性质1 教案.docx_第5页
已阅读5页,还剩3页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

平行四边形的性质(1)一、教学目标知识与技能:1、理解平行四边形的定义及有关概念;2、能根据定义探索并掌握平行四边形对边相等的性质;3、 了解平行四边形在实际生活中的应用,能根据平行四边形的性质进行简单的计算和证明。过程与方法:1、经历用平行四边形描述、观察世界的过程,发展学生的形象思维和抽象思维。2、 在进行探索的活动过程中,发展学生的探究能力;3、 在对性质的应用过程中,提高学生应用数学知识解决实际问题的能力。情感、态度与价值观:1、 通过图片欣赏,让学生感受到生活处处有数学,进一步陶冶情操;2、 在探究讨论中养成与他人合作交流的习惯;在性质应用过程中培养独立思考的习惯;在数学活动中获得成功的体验,提高克服困难的勇气和信心。二、教学重难点重点:平行四边形的概念和性质。难点:平行四边形性质的探究三、课前准备:教师准备:多媒体课件、平行四边形纸板学生准备:全等三角形纸板、平行四边形纸板、量角器、刻度尺、圆规四、教学过程:(一)、创设情境,导入新课导语:有人说知识就像我们的老朋友一样,不常联系,就会默默地遗忘,今天就让我们一起去见一见我们这个老朋友。那你们知道我们这个老朋友是谁吗?它就是我们小学就认识的朋友平行四边形(揭示课题)。都说数学源于生活,生活处处有数学。下面就请大家欣赏几幅我们非常熟悉的美图,看看你能否发现其中的数学奥妙!1、图片欣赏,找出你熟悉的几何图形,感悟平行四边形在生活中的广泛应用。师:其实在我们的生活中还有很多平行四边形的实例,比如我们的扶手楼梯,门框、还有民间艺术品等等。师:平行四边形在我们的生活中随处可见,它装点着我们的生活,服务着我们的生活。同学们你还知道生活中平行四边形的哪些实例吗?生:瓷砖、晾衣架、小区门口的电动推拉门、交通标志、停车位线框等。(二)感悟图形,明确概念师:是的,这些都是由平行四边形组成的,那你知道什么样的四边形叫平行四边形吗?请大家观察图形,说出下列图形的边有什么位置关系? (1) (2) (3)1、观察质疑:平行四边形如何区别于一般的四边形,进而让学生自己归纳定义:有两组对边分别平行的四边形叫做平行四边形2、介绍平行四边形读法、写法、几何语言、对边、邻边、对角、邻角、对角线等概念(三)小组活动,探究新知1、提出问题:平行四边形除以上性质之外还有其他性质吗?鼓励学生大胆猜想(提示:仿照三角形的学习方法从边、角的关系上去探索)2、猜想:从视觉上猜想平行四边形的对边相等,对角相等,邻角互补。3、小组活动,验证猜想:根据提示的方法(画一画、折一折、转一转、移一移、量一量、拼一拼),各组任选一种方法进行小组活动验证其猜想,并请各组代表发言。4、师生活动,推理证明推理:(如何证明上述结论?)已知:如图 ABCD,求证:ABCD,CBAD,B=D,BAD=DCB。分析:作 ABCD的对角线AC,它将平行四边形分成ABC和CDA,证明这两个三角形全等即可得到结论(作对角线是解决四边形问题常用的辅助线,通过作对角线,可以把未知问题转化为已知的关于三角形的问题)证明:连接AC,四边形ABCD是平行四边形AABCD,ADBC,(平行四边形的对边平行)1D12,344在 ABC和CDA中3 12,C2 ACCA,B34 ABCCDA(ASA)ABCD,BCDA,BD又12,341423即BADDCB分析:解决四边形问题的常用方法:转化为三角形的问题。5、 得出结论:性质1:平行四边形对边平行且相等;性质2:平行四边形对角相等,邻角互补。(4) 例题讲解,活用知识例题:已知:如图,在ABCD中,E,F是对角线AC上的两点,并且AE=CF.求证:BE=DF.证明:四边形ABCD是平行四边形,EADAB=CD(平行四边形的对边相等) AB/CD(平行四边形的定义)BAE=DCFFCB又AE=CF(已知),ABE CDF(SAS)BE=DF(师生共同完成此题,并重点强调平行四边形的几何表述和书写过程)(5) 随堂练习,提高能力教材137页随堂练习第1题和第2题,第一题口述,第二题请一个学生上黑板来做,其余学生草稿本上练习。教师巡视,并根据掌握情况进行评讲。(6) 归纳总结,鼓励评价教师带领学生从三方面对本节课的内容进行总结:一:平行四边形的定义,二:平行四边形的表示方法,三:平行四边形的性质(7) 布置作业,巩固理解完善育才金典 P122P123 完成天府前沿P108P109预习7.2 平行四边形的性质(2)(育才金典八上P123P125)拓展作业:已知四边形以A、B、C、D为顶点的平行四边形,A(3,0)B(-1,0)C(0,2),求D的坐标。(8) 经典语录,师生共勉通过本节课的探究学习,赠送学生一句话:在数学的天地里,重要的不是我们知道什么,而是我们怎么知道什么。以此达到师生共勉的的目的。(九)板书设计,理清思路平行四边形的性质(1) 定义:两组对边分别平行的四边形叫做平行四边形 记作: ABCD 读作:平行四边形四边形ABCD是平行四边形几何语言:ABCDADBC三要素:边、角、对角线证明:连接AC,四边形ABCD是平行四边形ABCD,ADBC,(平行四边形的对边平行)12,34在 ABC和CDA中 12, ACCA,34 ABCCDA(ASA)ABCD,BCDA, BD12,341423即BADDCB性质1:平行四边形对边平行且相等;四边形ABCD是平行四边形ABCD ADBC性质2:平行四边形对角相等,邻角互补。四边形ABCD是平行四边形A=C B=DA+B=180B+C=180例题:证明:四边形ABCD是平行四边形,AB=CD(平行四边形的对边相等) AB/CD(平行四边形的定义)BAE=DCF在ABE和CDF中 AB = CD (已证) BAE=DCF(已证) AE=CF (已知)BAEDCF(SAS) BE=DF(全等三角形对应边相等)练

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论