免费预览已结束,剩余33页可下载查看
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
概率论与数理统计专业毕业论文 精品论文 复合Poisson-Geometric风险模型的研究关键词:风险模型 Poisson Geometric 罚金折现期望函数 分红边界 可变保费摘要:经典风险模型中,理赔次数服从Poisson过程,其均值等于方差,但事实上,理赔次数的方差往往大于均值,散度相对较大,在此背景下,本文利用大家熟悉的Gerber-Shiu罚金折现期望函数这一重要工具研究了索赔次数为Poisson-Geometric过程风险模型的相关问题(在国外这一模型又被称作Polya-Aeppli风险模型)。 根据内容本文共分为以下三章: 第一章本章为绪论,首先回顾了风险理论的发展、推广及一些相关学者的主要研究成果.然后回顾了复合Poisson-Geometric过程的相关知识,为第二章和第三章的内容做了准备。 第二章本章研究了带常数分红边界的复合Poisson-Geometric风险模型。利用参考文献13中的思想,该模型为一平衡更新风险模型.我们给出了罚金折现期望函数满足的积分微分方程,进而证明了方程的解mb,e(u)可以通过带分红边界的一般更新风险模型的罚金折现期望函数mb(u)表示出来.然后我们通过无穷序列的形式得到了mb(u)解的表达式.最后当索赔服从特定指数分布时讨论了Gerber-Shiu罚金折现期望函数的精确表达式。 第三章这一章我们推广了复合Poisson-Geometric风险模型,设保费是可变的,首先将该模型的保费推广为任意离散随机变量,研究了随机保费率下的破产概率的Laplace变换表达式.然后研究了保单以Poisson过程到达时,每张保单收取的保费为一个随机变量,累计索赔次数为Poisson-Geometric过程的保费随机化的风险模型.对此模型用鞅论的方法讨论了破产概率及Lundberg上界,然后研究了破产时的罚金折现期望函数所满足的积分方程,并在指数索赔分布下,得到了罚金折现期望函数及破产概率的精确表达式。正文内容 经典风险模型中,理赔次数服从Poisson过程,其均值等于方差,但事实上,理赔次数的方差往往大于均值,散度相对较大,在此背景下,本文利用大家熟悉的Gerber-Shiu罚金折现期望函数这一重要工具研究了索赔次数为Poisson-Geometric过程风险模型的相关问题(在国外这一模型又被称作Polya-Aeppli风险模型)。 根据内容本文共分为以下三章: 第一章本章为绪论,首先回顾了风险理论的发展、推广及一些相关学者的主要研究成果.然后回顾了复合Poisson-Geometric过程的相关知识,为第二章和第三章的内容做了准备。 第二章本章研究了带常数分红边界的复合Poisson-Geometric风险模型。利用参考文献13中的思想,该模型为一平衡更新风险模型.我们给出了罚金折现期望函数满足的积分微分方程,进而证明了方程的解mb,e(u)可以通过带分红边界的一般更新风险模型的罚金折现期望函数mb(u)表示出来.然后我们通过无穷序列的形式得到了mb(u)解的表达式.最后当索赔服从特定指数分布时讨论了Gerber-Shiu罚金折现期望函数的精确表达式。 第三章这一章我们推广了复合Poisson-Geometric风险模型,设保费是可变的,首先将该模型的保费推广为任意离散随机变量,研究了随机保费率下的破产概率的Laplace变换表达式.然后研究了保单以Poisson过程到达时,每张保单收取的保费为一个随机变量,累计索赔次数为Poisson-Geometric过程的保费随机化的风险模型.对此模型用鞅论的方法讨论了破产概率及Lundberg上界,然后研究了破产时的罚金折现期望函数所满足的积分方程,并在指数索赔分布下,得到了罚金折现期望函数及破产概率的精确表达式。经典风险模型中,理赔次数服从Poisson过程,其均值等于方差,但事实上,理赔次数的方差往往大于均值,散度相对较大,在此背景下,本文利用大家熟悉的Gerber-Shiu罚金折现期望函数这一重要工具研究了索赔次数为Poisson-Geometric过程风险模型的相关问题(在国外这一模型又被称作Polya-Aeppli风险模型)。 根据内容本文共分为以下三章: 第一章本章为绪论,首先回顾了风险理论的发展、推广及一些相关学者的主要研究成果.然后回顾了复合Poisson-Geometric过程的相关知识,为第二章和第三章的内容做了准备。 第二章本章研究了带常数分红边界的复合Poisson-Geometric风险模型。利用参考文献13中的思想,该模型为一平衡更新风险模型.我们给出了罚金折现期望函数满足的积分微分方程,进而证明了方程的解mb,e(u)可以通过带分红边界的一般更新风险模型的罚金折现期望函数mb(u)表示出来.然后我们通过无穷序列的形式得到了mb(u)解的表达式.最后当索赔服从特定指数分布时讨论了Gerber-Shiu罚金折现期望函数的精确表达式。 第三章这一章我们推广了复合Poisson-Geometric风险模型,设保费是可变的,首先将该模型的保费推广为任意离散随机变量,研究了随机保费率下的破产概率的Laplace变换表达式.然后研究了保单以Poisson过程到达时,每张保单收取的保费为一个随机变量,累计索赔次数为Poisson-Geometric过程的保费随机化的风险模型.对此模型用鞅论的方法讨论了破产概率及Lundberg上界,然后研究了破产时的罚金折现期望函数所满足的积分方程,并在指数索赔分布下,得到了罚金折现期望函数及破产概率的精确表达式。经典风险模型中,理赔次数服从Poisson过程,其均值等于方差,但事实上,理赔次数的方差往往大于均值,散度相对较大,在此背景下,本文利用大家熟悉的Gerber-Shiu罚金折现期望函数这一重要工具研究了索赔次数为Poisson-Geometric过程风险模型的相关问题(在国外这一模型又被称作Polya-Aeppli风险模型)。 根据内容本文共分为以下三章: 第一章本章为绪论,首先回顾了风险理论的发展、推广及一些相关学者的主要研究成果.然后回顾了复合Poisson-Geometric过程的相关知识,为第二章和第三章的内容做了准备。 第二章本章研究了带常数分红边界的复合Poisson-Geometric风险模型。利用参考文献13中的思想,该模型为一平衡更新风险模型.我们给出了罚金折现期望函数满足的积分微分方程,进而证明了方程的解mb,e(u)可以通过带分红边界的一般更新风险模型的罚金折现期望函数mb(u)表示出来.然后我们通过无穷序列的形式得到了mb(u)解的表达式.最后当索赔服从特定指数分布时讨论了Gerber-Shiu罚金折现期望函数的精确表达式。 第三章这一章我们推广了复合Poisson-Geometric风险模型,设保费是可变的,首先将该模型的保费推广为任意离散随机变量,研究了随机保费率下的破产概率的Laplace变换表达式.然后研究了保单以Poisson过程到达时,每张保单收取的保费为一个随机变量,累计索赔次数为Poisson-Geometric过程的保费随机化的风险模型.对此模型用鞅论的方法讨论了破产概率及Lundberg上界,然后研究了破产时的罚金折现期望函数所满足的积分方程,并在指数索赔分布下,得到了罚金折现期望函数及破产概率的精确表达式。经典风险模型中,理赔次数服从Poisson过程,其均值等于方差,但事实上,理赔次数的方差往往大于均值,散度相对较大,在此背景下,本文利用大家熟悉的Gerber-Shiu罚金折现期望函数这一重要工具研究了索赔次数为Poisson-Geometric过程风险模型的相关问题(在国外这一模型又被称作Polya-Aeppli风险模型)。 根据内容本文共分为以下三章: 第一章本章为绪论,首先回顾了风险理论的发展、推广及一些相关学者的主要研究成果.然后回顾了复合Poisson-Geometric过程的相关知识,为第二章和第三章的内容做了准备。 第二章本章研究了带常数分红边界的复合Poisson-Geometric风险模型。利用参考文献13中的思想,该模型为一平衡更新风险模型.我们给出了罚金折现期望函数满足的积分微分方程,进而证明了方程的解mb,e(u)可以通过带分红边界的一般更新风险模型的罚金折现期望函数mb(u)表示出来.然后我们通过无穷序列的形式得到了mb(u)解的表达式.最后当索赔服从特定指数分布时讨论了Gerber-Shiu罚金折现期望函数的精确表达式。 第三章这一章我们推广了复合Poisson-Geometric风险模型,设保费是可变的,首先将该模型的保费推广为任意离散随机变量,研究了随机保费率下的破产概率的Laplace变换表达式.然后研究了保单以Poisson过程到达时,每张保单收取的保费为一个随机变量,累计索赔次数为Poisson-Geometric过程的保费随机化的风险模型.对此模型用鞅论的方法讨论了破产概率及Lundberg上界,然后研究了破产时的罚金折现期望函数所满足的积分方程,并在指数索赔分布下,得到了罚金折现期望函数及破产概率的精确表达式。经典风险模型中,理赔次数服从Poisson过程,其均值等于方差,但事实上,理赔次数的方差往往大于均值,散度相对较大,在此背景下,本文利用大家熟悉的Gerber-Shiu罚金折现期望函数这一重要工具研究了索赔次数为Poisson-Geometric过程风险模型的相关问题(在国外这一模型又被称作Polya-Aeppli风险模型)。 根据内容本文共分为以下三章: 第一章本章为绪论,首先回顾了风险理论的发展、推广及一些相关学者的主要研究成果.然后回顾了复合Poisson-Geometric过程的相关知识,为第二章和第三章的内容做了准备。 第二章本章研究了带常数分红边界的复合Poisson-Geometric风险模型。利用参考文献13中的思想,该模型为一平衡更新风险模型.我们给出了罚金折现期望函数满足的积分微分方程,进而证明了方程的解mb,e(u)可以通过带分红边界的一般更新风险模型的罚金折现期望函数mb(u)表示出来.然后我们通过无穷序列的形式得到了mb(u)解的表达式.最后当索赔服从特定指数分布时讨论了Gerber-Shiu罚金折现期望函数的精确表达式。 第三章这一章我们推广了复合Poisson-Geometric风险模型,设保费是可变的,首先将该模型的保费推广为任意离散随机变量,研究了随机保费率下的破产概率的Laplace变换表达式.然后研究了保单以Poisson过程到达时,每张保单收取的保费为一个随机变量,累计索赔次数为Poisson-Geometric过程的保费随机化的风险模型.对此模型用鞅论的方法讨论了破产概率及Lundberg上界,然后研究了破产时的罚金折现期望函数所满足的积分方程,并在指数索赔分布下,得到了罚金折现期望函数及破产概率的精确表达式。经典风险模型中,理赔次数服从Poisson过程,其均值等于方差,但事实上,理赔次数的方差往往大于均值,散度相对较大,在此背景下,本文利用大家熟悉的Gerber-Shiu罚金折现期望函数这一重要工具研究了索赔次数为Poisson-Geometric过程风险模型的相关问题(在国外这一模型又被称作Polya-Aeppli风险模型)。 根据内容本文共分为以下三章: 第一章本章为绪论,首先回顾了风险理论的发展、推广及一些相关学者的主要研究成果.然后回顾了复合Poisson-Geometric过程的相关知识,为第二章和第三章的内容做了准备。 第二章本章研究了带常数分红边界的复合Poisson-Geometric风险模型。利用参考文献13中的思想,该模型为一平衡更新风险模型.我们给出了罚金折现期望函数满足的积分微分方程,进而证明了方程的解mb,e(u)可以通过带分红边界的一般更新风险模型的罚金折现期望函数mb(u)表示出来.然后我们通过无穷序列的形式得到了mb(u)解的表达式.最后当索赔服从特定指数分布时讨论了Gerber-Shiu罚金折现期望函数的精确表达式。 第三章这一章我们推广了复合Poisson-Geometric风险模型,设保费是可变的,首先将该模型的保费推广为任意离散随机变量,研究了随机保费率下的破产概率的Laplace变换表达式.然后研究了保单以Poisson过程到达时,每张保单收取的保费为一个随机变量,累计索赔次数为Poisson-Geometric过程的保费随机化的风险模型.对此模型用鞅论的方法讨论了破产概率及Lundberg上界,然后研究了破产时的罚金折现期望函数所满足的积分方程,并在指数索赔分布下,得到了罚金折现期望函数及破产概率的精确表达式。经典风险模型中,理赔次数服从Poisson过程,其均值等于方差,但事实上,理赔次数的方差往往大于均值,散度相对较大,在此背景下,本文利用大家熟悉的Gerber-Shiu罚金折现期望函数这一重要工具研究了索赔次数为Poisson-Geometric过程风险模型的相关问题(在国外这一模型又被称作Polya-Aeppli风险模型)。 根据内容本文共分为以下三章: 第一章本章为绪论,首先回顾了风险理论的发展、推广及一些相关学者的主要研究成果.然后回顾了复合Poisson-Geometric过程的相关知识,为第二章和第三章的内容做了准备。 第二章本章研究了带常数分红边界的复合Poisson-Geometric风险模型。利用参考文献13中的思想,该模型为一平衡更新风险模型.我们给出了罚金折现期望函数满足的积分微分方程,进而证明了方程的解mb,e(u)可以通过带分红边界的一般更新风险模型的罚金折现期望函数mb(u)表示出来.然后我们通过无穷序列的形式得到了mb(u)解的表达式.最后当索赔服从特定指数分布时讨论了Gerber-Shiu罚金折现期望函数的精确表达式。 第三章这一章我们推广了复合Poisson-Geometric风险模型,设保费是可变的,首先将该模型的保费推广为任意离散随机变量,研究了随机保费率下的破产概率的Laplace变换表达式.然后研究了保单以Poisson过程到达时,每张保单收取的保费为一个随机变量,累计索赔次数为Poisson-Geometric过程的保费随机化的风险模型.对此模型用鞅论的方法讨论了破产概率及Lundberg上界,然后研究了破产时的罚金折现期望函数所满足的积分方程,并在指数索赔分布下,得到了罚金折现期望函数及破产概率的精确表达式。经典风险模型中,理赔次数服从Poisson过程,其均值等于方差,但事实上,理赔次数的方差往往大于均值,散度相对较大,在此背景下,本文利用大家熟悉的Gerber-Shiu罚金折现期望函数这一重要工具研究了索赔次数为Poisson-Geometric过程风险模型的相关问题(在国外这一模型又被称作Polya-Aeppli风险模型)。 根据内容本文共分为以下三章: 第一章本章为绪论,首先回顾了风险理论的发展、推广及一些相关学者的主要研究成果.然后回顾了复合Poisson-Geometric过程的相关知识,为第二章和第三章的内容做了准备。 第二章本章研究了带常数分红边界的复合Poisson-Geometric风险模型。利用参考文献13中的思想,该模型为一平衡更新风险模型.我们给出了罚金折现期望函数满足的积分微分方程,进而证明了方程的解mb,e(u)可以通过带分红边界的一般更新风险模型的罚金折现期望函数mb(u)表示出来.然后我们通过无穷序列的形式得到了mb(u)解的表达式.最后当索赔服从特定指数分布时讨论了Gerber-Shiu罚金折现期望函数的精确表达式。 第三章这一章我们推广了复合Poisson-Geometric风险模型,设保费是可变的,首先将该模型的保费推广为任意离散随机变量,研究了随机保费率下的破产概率的Laplace变换表达式.然后研究了保单以Poisson过程到达时,每张保单收取的保费为一个随机变量,累计索赔次数为Poisson-Geometric过程的保费随机化的风险模型.对此模型用鞅论的方法讨论了破产概率及Lundberg上界,然后研究了破产时的罚金折现期望函数所满足的积分方程,并在指数索赔分布下,得到了罚金折现期望函数及破产概率的精确表达式。经典风险模型中,理赔次数服从Poisson过程,其均值等于方差,但事实上,理赔次数的方差往往大于均值,散度相对较大,在此背景下,本文利用大家熟悉的Gerber-Shiu罚金折现期望函数这一重要工具研究了索赔次数为Poisson-Geometric过程风险模型的相关问题(在国外这一模型又被称作Polya-Aeppli风险模型)。 根据内容本文共分为以下三章: 第一章本章为绪论,首先回顾了风险理论的发展、推广及一些相关学者的主要研究成果.然后回顾了复合Poisson-Geometric过程的相关知识,为第二章和第三章的内容做了准备。 第二章本章研究了带常数分红边界的复合Poisson-Geometric风险模型。利用参考文献13中的思想,该模型为一平衡更新风险模型.我们给出了罚金折现期望函数满足的积分微分方程,进而证明了方程的解mb,e(u)可以通过带分红边界的一般更新风险模型的罚金折现期望函数mb(u)表示出来.然后我们通过无穷序列的形式得到了mb(u)解的表达式.最后当索赔服从特定指数分布时讨论了Gerber-Shiu罚金折现期望函数的精确表达式。 第三章这一章我们推广了复合Poisson-Geometric风险模型,设保费是可变的,首先将该模型的保费推广为任意离散随机变量,研究了随机保费率下的破产概率的Laplace变换表达式.然后研究了保单以Poisson过程到达时,每张保单收取的保费为一个随机变量,累计索赔次数为Poisson-Geometric过程的保费随机化的风险模型.对此模型用鞅论的方法讨论了破产概率及Lundberg上界,然后研究了破产时的罚金折现期望函数所满足的积分方程,并在指数索赔分布下,得到了罚金折现期望函数及破产概率的精确表达式。经典风险模型中,理赔次数服从Poisson过程,其均值等于方差,但事实上,理赔次数的方差往往大于均值,散度相对较大,在此背景下,本文利用大家熟悉的Gerber-Shiu罚金折现期望函数这一重要工具研究了索赔次数为Poisson-Geometric过程风险模型的相关问题(在国外这一模型又被称作Polya-Aeppli风险模型)。 根据内容本文共分为以下三章: 第一章本章为绪论,首先回顾了风险理论的发展、推广及一些相关学者的主要研究成果.然后回顾了复合Poisson-Geometric过程的相关知识,为第二章和第三章的内容做了准备。 第二章本章研究了带常数分红边界的复合Poisson-Geometric风险模型。利用参考文献13中的思想,该模型为一平衡更新风险模型.我们给出了罚金折现期望函数满足的积分微分方程,进而证明了方程的解mb,e(u)可以通过带分红边界的一般更新风险模型的罚金折现期望函数mb(u)
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- GB/T 11848.6-2025铀矿石浓缩物分析方法第6部分:氟的测定离子选择性电极法
- 康复医学科脊柱损伤康复训练方案
- 神经科脑出血术后护理学教程
- 肾内科慢性肾病透析并发症预防须知
- 四川省德阳市高中2025-2026学年高二化学第一学期期末监测模拟试题含解析
- 新疆哈密石油中学2026届高二上生物期末监测试题含解析
- 系统性红斑狼疮肾炎护理措施培训
- 银屑病患者心理护理方案
- 贸易公司实训总结
- 头部外伤急诊处理流程
- 2025年辅导员技能大赛案例分析报告题库附答案
- 注塑生产车间管理方法
- 高校教师工作介绍
- 2025年大学《木结构建筑与材料-木结构建筑与材料概论》考试备考试题及答案解析
- 文员岗位技能提升培训教材
- 本科合格评估学院院长汇报
- 2025年考研基础医学考研真题解析(含答案)
- 初中生物2025-2026学年人教版生物七年级上册期中测试卷
- 2025-2026学年人教版(2024)数学七年级上册期中测试卷
- 携手共进+圆梦高考-2025-2026学年高三上学期家长会
- 国家职业技术技能标准 4-10-03-01 美容师 人社厅发2018145号
评论
0/150
提交评论