




已阅读5页,还剩21页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
普通高中课程标准实验教科书数学 人教版 高三新数学第一轮复习教案(讲座10)空间中的平行关系一课标要求:1平面的基本性质与推论借助长方体模型,在直观认识和理解空间点、线、面的位置关系的基础上,抽象出空间线、面位置关系的定义,并了解如下可以作为推理依据的公理和定理:公理1:如果一条直线上的两点在一个平面内,那么这条直线在此平面内;公理2:过不在一条直线上的三点,有且只有一个平面;公理3:如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线;公理4:平行于同一条直线的两条直线平行;定理:空间中如果两个角的两条边分别对应平行,那么这两个角相等或互补。2空间中的平行关系以立体几何的上述定义、公理和定理为出发点,通过直观感知、操作确认、思辨论证,认识和理解空间中线面平行、垂直的有关性质与判定。通过直观感知、操作确认,归纳出以下判定定理:平面外一条直线与此平面内的一条直线平行,则该直线与此平面平行;一个平面内的两条相交直线与另一个平面平行,则这两个平面平行;通过直观感知、操作确认,归纳出以下性质定理,并加以证明:一条直线与一个平面平行,则过该直线的任一个平面与此平面的交线与该直线平行;两个平面平行,则任意一个平面与这两个平面相交所得的交线相互平行;垂直于同一个平面的两条直线平行能运用已获得的结论证明一些空间位置关系的简单命题。二命题走向立体几何在高考中占据重要的地位,通过近几年的高考情况分析,考察的重点及难点稳定,高考始终把直线与直线、直线与平面、平面与平面平行的性质和判定作为考察重点。在难度上也始终以中等偏难为主,在新课标教材中将立体几何要求进行了降低,重点在对图形及几何体的认识上,实现平面到空间的转化,示知识深化和拓展的重点,因而在这部分知识点上命题,将是重中之重。预测2007年高考将以多面体为载体直接考察线面位置关系:(1)考题将会出现一个选择题、一个填空题和一个解答题;(2)在考题上的特点为:热点问题为平面的基本性质,考察线线、线面和面面关系的论证,此类题目将以客观题和解答题的第一步为主。三要点精讲1平面概述(1)平面的两个特征:无限延展 平的(没有厚度)(2)平面的画法:通常画平行四边形来表示平面(3)平面的表示:用一个小写的希腊字母、等表示,如平面、平面;用表示平行四边形的两个相对顶点的字母表示,如平面AC。2三公理三推论:公理1:若一条直线上有两个点在一个平面内,则该直线上所有的点都在这个平面内:A,B,A,B公理2:如果两个平面有一个公共点,那么它们还有其他公共点,且所有这些公共点的集合是一条过这个公共点的直线。公理3:经过不在同一直线上的三点,有且只有一个平面。推论一:经过一条直线和这条直线外的一点,有且只有一个平面。推论二:经过两条相交直线,有且只有一个平面。推论三:经过两条平行直线,有且只有一个平面。3空间直线:(1)空间两条直线的位置关系:相交直线有且仅有一个公共点;平行直线在同一平面内,没有公共点; 异面直线不同在任何一个平面内,没有公共点。相交直线和平行直线也称为共面直线。异面直线的画法常用的有下列三种:(2)平行直线:在平面几何中,平行于同一条直线的两条直线互相平行,这个结论在空间也是成立的。即公理4:平行于同一条直线的两条直线互相平行。(3)异面直线定理:连结平面内一点与平面外一点的直线,和这个平面内不经过此点的直线是异面直线。推理模式:与a是异面直线。4直线和平面的位置关系(1)直线在平面内(无数个公共点);(2)直线和平面相交(有且只有一个公共点);(3)直线和平面平行(没有公共点)用两分法进行两次分类。它们的图形分别可表示为如下,符号分别可表示为,。线面平行的判定定理:如果不在一个平面内的一条直线和平面内的一条直线平行,那么这条直线和这个平面平行。推理模式:线面平行的性质定理:如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线和交线平行。推理模式:5两个平面的位置关系有两种:两平面相交(有一条公共直线)、两平面平行(没有公共点)(1)两个平面平行的判定定理:如果一个平面内有两条相交直线都平行于一个平面,那么这两个平面平行。定理的模式:推论:如果一个平面内有两条相交直线分别平行于另一个平面内的两条相交直线,那么这两个平面互相平行。推论模式:(2)两个平面平行的性质(1)如果两个平面平行,那么其中一个平面内的直线平行于另一个平面;(2)如果两个平行平面同时和第三个平面相交,那么它们的交线平行。四典例解析题型1:共线、共点和共面问题例1(1)如图所示,平面ABD平面BCD 直线BD ,M 、N 、P 、Q 分别为线段AB 、BC 、CD 、DA 上的点,四边形MNPQ 是以PN 、QM 为腰的梯形。试证明三直线BD 、MQ 、NP 共点。证明:四边形MNPQ 是梯形,且MQ 、NP 是腰,直线MQ 、NP 必相交于某一点O 。O 直线MQ ;直线MQ 平面ABD ,O 平面ABD。同理,O 平面BCD ,又两平面ABD 、BCD 的交线为BD ,故由公理二知,O 直线BD ,从而三直线BD 、MQ 、NP 共点。点评:由已知条件,直线MQ 、NP 必相交于一点O ,因此,问题转化为求证点O 在直线BD 上,由公理二,就是要寻找两个平面,使直线BD 是这两个平面的交线,同时点O 是这两个平面的公共点即可“三点共线”及“三线共点”的问题都可以转化为证明“点在直线上”的问题。DCBAEFHG(2)如图所示,在四边形ABCD中,已知ABCD,直线AB,BC,AD,DC分别与平面相交于点E,G,H,F求证:E,F,G,H四点必定共线。证明:ABCD,AB,CD确定一个平面又ABE,AB,E,E,即E为平面与的一个公共点。同理可证F,G,H均为平面与的公共点两个平面有公共点,它们有且只有一条通过公共点的公共直线,E,F,G,H四点必定共线。点评:在立体几何的问题中,证明若干点共线时,常运用公理2,即先证明这些点都是某二平面的公共点,而后得出这些点都在二平面的交线上的结论。例2已知:a,b,c,d是不共点且两两相交的四条直线,求证:a,b,c,d共面。badcGFEAabcdHK图1图2证明:1o若当四条直线中有三条相交于一点,不妨设a,b,c相交于一点A,但Ad,如图1所示:直线d和A确定一个平面。又设直线d与a,b,c分别相交于E,F,G,则A,E,F,G。A,E,A,Ea,a。同理可证b,c。a,b,c,d在同一平面内。2o当四条直线中任何三条都不共点时,如图2所示:这四条直线两两相交,则设相交直线a,b确定一个平面。设直线c与a,b分别交于点H,K,则H,K。又 H,Kc,c,则c。同理可证d。a,b,c,d四条直线在同一平面内点评:证明若干条线(或若干个点)共面的一般步骤是:首先根据公理3或推论,由题给条件中的部分线(或点)确定一个平面,然后再根据公理1证明其余的线(或点)均在这个平面内。本题最容易忽视“三线共点”这一种情况。因此,在分析题意时,应仔细推敲问题中每一句话的含义。题型2:异面直线的判定与应用例3已知:如图所示,a b a ,b b ,a b A ,c a ,c a 。求证直线b 、c 为异面直线。证法一:假设b 、c 共面于g 由A a ,a c 知,A c ,而a b A,a b a , A g ,A a。又c a , g 、a 都经过直线c 及其外的一点A, g 与a 重合,于是a g ,又b b。又g 、b 都经过两相交直线a 、b ,从而g 、b 重合。 a 、b 、g 为同一平面,这与a b a 矛盾。 b 、c 为异面直线证法二:假设b 、c 共面,则b ,c 相交或平行。(1)若b c ,又a c ,则由公理4知a b ,这与a b A 矛盾。(2)若b c P ,已知b b ,c a ,则P 是a 、b 的公共点,由公理2,P a ,又b c P ,即P c ,故a c P ,这与a c 矛盾。综合(1)、(2)可知,b 、c 为异面直线。证法三: a b a ,a b A , A a 。 a c , A c ,在直线b 上任取一点P(P 异于A),则P a(否则b a ,又a a ,则a 、b 都经过两相交直线a 、b ,则a 、b 重合,与a b a 矛盾)。又c a ,于是根据“过平面外一点与平面内一点的直线,和平面内不经过该点的直线是异面直线”知,b 、c 为异面直线。点评:证明两直线为异面直线的思路主要有两条:一是利用反证法;二是利用结论“过平面外一点与平面内一点的直线,和平面内不经过该点的直线是异面直线。异面直线又有两条途径:其一是直接假设b 、c 共面而产生矛盾;其二是假设b 、c 平行与相交;分别产生矛盾。判定直线异面,若为解答题,则用得最多的是证法一、二的思路;若为选择或填空题,则往往都是用证法三的思路。用反证法证题,一般可归纳为四个步骤:(1)否定结论;(2)进行推理;(3)导出矛盾;(4)肯定结论宜用反证法证明的命题往往是(1)基本定理或某一知识系统的初始阶段的命题(如立体几何中的线面、面面平行的判定定量的证明等);(2)肯定或否定型的命题(如结论中出现“必有”、“必不存在”等一类命题);(3)唯一型的命题(如“图形唯一”、“方程解唯一”等一类命题);(4)正面情况较为繁多,而结论的反面却只有一两种情况的一类命题;(5)结论中出现“至多”、“不多于”等一类命题。例4(1)已知异面直线a,b所成的角为70,则过空间一定点O,与两条异面直线a,b都成60角的直线有( )条A1 B2 C3 D4(2)异面直线a,b所成的角为,空间中有一定点O,过点O有3条直线与a,b所成角都是60,则的取值可能是( )A30 B50 C60 D90解析:(1)过空间一点O分别作a,b。将两对对顶角的平分线绕O点分别在竖直平面内转动,总能得到与 都成60角的直线。故过点 O与a,b都成60角的直线有4条,从而选D。(2)过点O分别作a、b,则过点O有三条直线与a,b所成角都为60,等价于过点O有三条直线与所成角都为60,其中一条正是角的平分线。从而可得选项为C。点评:该题以学生对异面直线所成的角会适当转化,较好的考察了空间想象能力。题型3:线线平行的判定与性质例5(2003上海春,13)关于直线a、b、l及平面M、N,下列命题中正确的是( )A若aM,bM,则abB若aM,ba,则bMC若aM,bM,且la,lb,则lMD若aM,aN,则MN解析:解析:A选项中,若aM,bM,则有ab或a与b相交或a与b异面。B选项中,b可能在M内,b可能与M平行,b可能与M相交.C选项中须增加a与b相交,则lM。D选项证明如下:aN,过a作平面与N交于c,则ca,cM.故MN。答案D。点评:本题考查直线与直线、直线与平面、平面与平面的基本性质。例6两个全等的正方形ABCD和ABEF所在平面相交于AB,MAC,NFB,且AM=FN,求证:MN平面BCE。证法一:作MPBC,NQBE,P、Q为垂足,则MPAB,NQAB。MPNQ,又AM=NF,AC=BF,MC=NB,MCP=NBQ=45RtMCPRtNBQMP=NQ,故四边形MPQN为平行四边形MNPQPQ平面BCE,MN在平面BCE外,MN平面BCE。证法二:如图过M作MHAB于H,则MHBC,连结NH,由BF=AC,FN=AM,得 NH/AF/BE由MH/BC, NH/BE得:平面MNH/平面BCEMN平面BCE。题型4:线面平行的判定与性质例7(2006四川理19 )如图,在长方体中,分别是的中点,分别是的中点,求证:面。证明:取的中点,连结;分别为的中点面,面面面 面点评:主要考察长方体的概念、直线和平面、平面和平面的关系等基础知识,主要考察线面平行的判定定理。例8(1999全国文22,理21)如图所示,已知正四棱柱ABCDA1B1C1D1,点E在棱D1D上,截面EACD1B,且面EAC与底面ABCD所成的角为45,ABa.()求截面EAC的面积;()求异面直线A1B1与AC之间的距离;图解:()如图所示,连结DB交AC于O,连结EO。底面ABCD是正方形,DOAC 又ED底面AC, EOACEOD是面EAC与底面AC所成二面角的平面角,EOD45DOa,ACa,EOasec45a,故SEAC=EOACa2()由题设ABCDA1B1C1D1是正四棱柱,得A1A底面AC,A1AAC又A1AA1B1,A1A是异面直线A1B1与AC间的公垂线.D1B面EAC,且面D1BD与面EAC交线为EO,D1BEO,又O是DB的中点E是D1D的中点,D1B2EO2a.D1Da异面直线A1B1与AC间的距离为a.题型5:面面平行的判定与性质例9如图,正方体ABCDA1B1C1D1 的棱长为a。证明:平面ACD1 平面A1C1B 。证明:如图, A1BCD1 是矩形,A1B D1C 。又D1C 平面D1CA ,A1B 平面D1CA , A1B 平面D1CA。同理A1C1 平面D1CA ,又A1C1 A1B A1 , 平面D1CA 平面BA1C1 点评:证明面面平行,关键在于证明A1C1 与A1B 两相交直线分别与平面ACD1 平行。例10P是ABC所在平面外一点,A、B、C分别是PBC、PCA、PAB的重心。(1)求证:平面ABC平面ABC;(2)SABCSABC的值。解析:(1)取AB、BC的中点M、N,则ACMNAC平面ABC。同理AB面ABC,ABC面ABC.(2)AC=MN=AC=AC,同理五思维总结在掌握直线与平面的位置关系(包括直线与直线、直线与平面、平面与平面间的位置关系)的基础上,研究有关平行的判定依据(定义、公理和定理)、判定方法及有关性质的应用;在有关问题的解决过程中,进一步了解和掌握相关公理、定理的内容和功能,并探索立体几何中论证问题的规律;在有关问题的分析与解决的过程中提高逻辑思维能力、空间想象能力及化归和转化的数学思想的应用1用类比的思想去认识面的垂直与平行关系,注意垂直与平行间的联系。2注意立体几何问题向平面几何问题的转化,即立几问题平面化。3注意下面的转化关系:4直线和平面相互平行证明方法:证明直线和这个平面内的一条直线相互平行;证明这条直线的方向量和这个平面内的一个向量相互平行;证明这条直线的方向量和这个平面的法向量相互垂直。5证明两平面平行的方法:(1)利用定义证明。利用反证法,假设两平面不平行,则它们必相交,再导出矛盾。(2)判定定理:一个平面内有两条相交直线都平行于另一个平面,则这两个平面平行,这个定理可简记为线面平行则面面平行。用符号表示是:ab,a ,b ,a,b,则。(3)垂直于同一直线的两个平面平行。用符号表示是:a,a则。(4)平行于同一个平面的两个平面平行。两个平面平行的性质有五条:(1)两个平面平行,其中一个平面内的任一直线必平行于另一个平面,这个定理可简记为:“面面平行,则线面平行”。用符号表示是:,a ,则a。(2)如果两个平行平面同时与第三个平面相交,那么它们的交线平行,这个定理可简记为:“面面平行,则线线平行”。用符号表示是:,=a,=b,则ab。(3)一条直线垂直于两平行平面中的一个平面,它也垂直于另一个平面。这个定理可用于证线面垂直。用符号表示是:,a,则a。(4)夹在两个平行平面间的平行线段相等。(5)过平面外一点只有一个平面与已知平面平行。普通高中课程标准实验教科书数学 人教版 高三新数学第一轮复习教案(讲座9)空间几何体的表面积和体积一课标要求:了解球、棱柱、棱锥、台的表面积和体积的计算公式(不要求记忆公式)。二命题走向近些年来在高考中不仅有直接求多面体、旋转体的面积和体积问题,也有已知面积或体积求某些元素的量或元素间的位置关系问题。即使考查空间线面的位置关系问题,也常以几何体为依托.因而要熟练掌握多面体与旋转体的概念、性质以及它们的求积公式.同时也要学会运用等价转化思想,会把组合体求积问题转化为基本几何体的求积问题,会等体积转化求解问题,会把立体问题转化为平面问题求解,会运用“割补法”等求解。由于本讲公式多反映在考题上,预测008年高考有以下特色:(1)用选择、填空题考查本章的基本性质和求积公式;(2)考题可能为:与多面体和旋转体的面积、体积有关的计算问题;与多面体和旋转体中某些元素有关的计算问题;三要点精讲1多面体的面积和体积公式名称侧面积(S侧)全面积(S全)体 积(V)棱柱棱柱直截面周长lS侧+2S底S底h=S直截面h直棱柱chS底h棱锥棱锥各侧面积之和S侧+S底S底h正棱锥ch棱台棱台各侧面面积之和S侧+S上底+S下底h(S上底+S下底+)正棱台 (c+c)h表中S表示面积,c、c分别表示上、下底面周长,h表斜高,h表示斜高,l表示侧棱长。2旋转体的面积和体积公式名称圆柱圆锥圆台球S侧2rlrl(r1+r2)lS全2r(l+r)r(l+r)(r1+r2)l+(r21+r22)4R2Vr2h(即r2l)r2hh(r21+r1r2+r22)R3表中l、h分别表示母线、高,r表示圆柱、圆锥与球冠的底半径,r1、r2分别表示圆台 上、下底面半径,R表示半径。四典例解析题型1:柱体的体积和表面积例1一个长方体全面积是20cm2,所有棱长的和是24cm,求长方体的对角线长.解:设长方体的长、宽、高、对角线长分别为xcm、ycm、zcm、lcm依题意得: 由(2)2得:x2+y2+z2+2xy+2yz+2xz=36(3)由(3)(1)得x2+y2+z2=16即l2=16所以l=4(cm)。点评:涉及棱柱面积问题的题目多以直棱柱为主,而直棱柱中又以正方体、长方体的表面积多被考察。我们平常的学习中要多建立一些重要的几何要素(对角线、内切)与面积、体积之间的关系。例2如图1所示,在平行六面体ABCDA1B1C1D1中,已知AB=5,AD=4,AA1=3,ABAD,A1AB=A1AD=。(1)求证:顶点A1在底面ABCD上的射影O在BAD的平分线上;(2)求这个平行六面体的体积。图1 图2解析:(1)如图2,连结A1O,则A1O底面ABCD。作OMAB交AB于M,作ONAD交AD于N,连结A1M,A1N。由三垂线定得得A1MAB,A1NAD。A1AM=A1AN,RtA1NARtA1MA,A1M=A1N,从而OM=ON。点O在BAD的平分线上。(2)AM=AA1cos=3=AO=。又在RtAOA1中,A1O2=AA12 AO2=9=,A1O=,平行六面体的体积为。题型2:柱体的表面积、体积综合问题例3(2000全国,3)一个长方体共一顶点的三个面的面积分别是,这个长方体对角线的长是( )A2 B3 C6 D解析:设长方体共一顶点的三边长分别为a=1,b,c,则对角线l的长为l=;答案D。点评:解题思路是将三个面的面积转化为解棱柱面积、体积的几何要素棱长。例4如图,三棱柱ABCA1B1C1中,若E、F分别为AB、AC 的中点,平面EB1C1将三棱柱分成体积为V1、V2的两部分,那么V1V2= _ _。解:设三棱柱的高为h,上下底的面积为S,体积为V,则V=V1+V2Sh。E、F分别为AB、AC的中点,SAEF=S,V1=h(S+S+)=ShV2=Sh-V1=Sh,V1V2=75。点评:解题的关键是棱柱、棱台间的转化关系,建立起求解体积的几何元素之间的对应关系。最后用统一的量建立比值得到结论即可。题型3:锥体的体积和表面积PABCDOE例5(2006上海,19)在四棱锥PABCD中,底面是边长为2的菱形,DAB60,对角线AC与BD相交于点O,PO平面ABCD,PB与平面ABCD所成的角为60,求四棱锥PABCD的体积?解:(1)在四棱锥P-ABCD中,由PO平面ABCD,得PBO是PB与平面ABCD所成的角,PBO=60。在RtAOB中BO=ABsin30=1, 由POBO,于是PO=BOtan60=,而底面菱形的面积为2。四棱锥PABCD的体积V=2=2。点评:本小题重点考查线面垂直、面面垂直、二面角及其平面角、棱锥的体积。在能力方面主要考查空间想象能力。图例6(2002京皖春文,19)在三棱锥SABC中,SAB=SAC=ACB=90,且AC=BC=5,SB=5。(如图所示)()证明:SCBC;()求侧面SBC与底面ABC所成二面角的大小;()求三棱锥的体积VSABC。解析:()证明:SAB=SAC=90,SAAB,SAAC。又ABAC=A,SA平面ABC。由于ACB=90,即BCAC,由三垂线定理,得SCBC。()解:BCAC,SCBC。SCA是侧面SCB与底面ABC所成二面角的平面角。在RtSCB中,BC=5,SB=5,得SC=10。在RtSAC中AC=5,SC=10,cosSCA=,SCA=60,即侧面SBC与底面ABC所成的二面角的大小为60。()解:在RtSAC中,SA=,SABC=ACBC=55=,VSABC=SACBSA=。点评:本题比较全面地考查了空间点、线、面的位置关系。要求对图形必须具备一定的洞察力,并进行一定的逻辑推理。题型4:锥体体积、表面积综合问题例7ABCD是边长为4的正方形,E、F分别是AB、AD的中点,GB垂直于正方形ABCD所在的平面,且GC2,求点B到平面EFC的距离?解:如图,取EF的中点O,连接GB、GO、CD、FB构造三棱锥BEFG。设点B到平面EFG的距离为h,BD,EF,CO。 。而GC平面ABCD,且GC2。由,得点评:该问题主要的求解思路是将点面的距离问题转化为体积问题来求解。构造以点B为顶点,EFG为底面的三棱锥是解此题的关键,利用同一个三棱锥的体积的唯一性列方程是解这类题的方法,从而简化了运算。例8(2006江西理,12)如图,在四面体ABCD中,截面AEF经过四面体的内切球(与四个面都相切的球)球心O,且与BC,DC分别截于E、F,如果截面将四面体分成体积相等的两部分,设四棱锥ABEFD与三棱锥AEFC的表面积分别是S1,S2,则必有( )AS1S2CS1=S2 DS1,S2的大小关系不能确定解:连OA、OB、OC、OD,则VABEFDVOABDVOABEVOBEFDVAEFCVOADCVOAECVOEFC又VABEFDVAEFC,而每个三棱锥的高都是原四面体的内切球的半径,故SABDSABESBEFDSADCSAECSEFC又面AEF公共,故选C点评:该题通过复合平面图形的分割过程,增加了题目处理的难度,求解棱锥的体积、表面积首先要转化好平面图形与空间几何体之间元素间的对应关系。题型5:棱台的体积、面积及其综合问题例9(2002北京理,18)如图924,在多面体ABCDA1B1C1D1中,上、下底面平行且均为矩形,相对的侧面与同一底面所成的二面角大小相等,侧棱延长后相交于E,F两点,上、下底面矩形的长、宽分别为c,d与a,b,且ac,bd,两底面间的距离为h。()求侧面ABB1A1与底面ABCD所成二面角的大小;()证明:EF面ABCD;()在估测该多面体的体积时,经常运用近似公式V估=S中截面h来计算.已知它的体积公式是V=(S上底面+4S中截面+S下底面),试判断V估与V的大小关系,并加以证明。(注:与两个底面平行,且到两个底面距离相等的截面称为该多面体的中截面)图()解:过B1C1作底面ABCD的垂直平面,交底面于PQ,过B1作B1GPQ,垂足为G。如图所示:平面ABCD平面A1B1C1D1,A1B1C1=90,ABPQ,ABB1P.B1PG为所求二面角的平面角.过C1作C1HPQ,垂足为H.由于相对侧面与底面所成二面角的大小相等,故四边形B1PQC1为等腰梯形。PG=(bd),又B1G=h,tanB1PG=(bd),B1PG=arctan,即所求二面角的大小为arctan.()证明:AB,CD是矩形ABCD的一组对边,有ABCD,又CD是面ABCD与面CDEF的交线,AB面CDEF。EF是面ABFE与面CDEF的交线,ABEF。AB是平面ABCD内的一条直线,EF在平面ABCD外,EF面ABCD。()V估V。证明:ac,bd,VV估=2cd+2ab+2(a+c)(b+d)3(a+c)(b+d)=(ac)(bd)0。V估V。点评:该题背景较新颖,把求二面角的大小与证明线、面平行这一常规运算置于非规则几何体(拟柱体)中,能考查考生的应变能力和适应能力,而第三步研究拟柱体的近似计算公式与可精确计算体积的辛普生公式之间计算误差的问题,是极具实际意义的问题。考查了考生继续学习的潜能。例10(1)(1998全国,9)如果棱台的两底面积分别是S、S,中截面的面积是S0,那么( )A B C2S0SS DS022SS(2)(1994全国,7)已知正六棱台的上、下底面边长分别为2和4,高为2,则其体积为( )A32 B28 C24 D20解析:(1)解析:设该棱台为正棱台来解即可,答案为A;(2)正六棱台上下底面面积分别为:S上6226,S下64224,V台,答案B。点评:本题考查棱台的中截面问题。根据选择题的特点本题选用“特例法”来解,此种解法在解选择题时很普遍,如选用特殊值、特殊点、特殊曲线、特殊图形等等。题型6:圆柱的体积、表面积及其综合问题例11(2000全国理,9)一个圆柱的侧面积展开图是一个正方形,这个圆柱的全面积与侧面积的比是( )A B C D解析:设圆柱的底面半径为r,高为h,则由题设知h=2r.S全=2r2+(2r)2=2r2(1+2).S侧=h2=42r2,。答案为A。点评:本题考查圆柱的侧面展开图、侧面积和全面积等知识。例12(2003京春理13,文14)如图99,一个底面半径为R的圆柱形量杯中装有适量的水.若放入一个半径为r的实心铁球,水面高度恰好升高r,则= 。解析:水面高度升高r,则圆柱体积增加R2r。恰好是半径为r的实心铁球的体积,因此有r3=R2r。故。答案为。点评:本题主要考查旋转体的基础知识以及计算能力和分析、解决问题的能力。图题型7:圆锥的体积、表面积及综合问题例13(1)(2002京皖春,7)在ABC中,AB=2,BC=1.5,ABC=120(如图所示),若将ABC绕直线BC旋转一周,则所形成的旋转体的体积是( )A BC D(2)(2001全国文,3)若一个圆锥的轴截面是等边三角形,其面积为,则这个圆锥的全面积是( )图A3 B3 C6 D9解析:(1)如图所示,该旋转体的体积为圆锥CADE与圆锥BADE体积之差,又求得AB=1。,答案D。(2)Sabsin,a2sin60,a24,a2,a=2r,r1,S全2rr223,答案A。点评:通过识图、想图、画图的角度考查了空间想象能力。而对空间图形的处理能力是空间想象力深化的标志,是高考从深层上考查空间想象能力的主要方向。例14(2000全国文,12)如图所示,OA是圆锥底面中心O到母线的垂线,OA绕轴旋转一周所得曲面将圆锥分成相等的两部分,则母线与轴的夹角的余弦值为( )A B C D解析:如图所示,由题意知,r2hR2h,图r 又ABOCAO,OA2rR,cos,答案为D。点评:本题重点考查柱体、锥体的体积公式及灵活的运算能力。题型8:球的体积、表面积例15已知过球面上三点的截面和球心的距离为球半径的一半,且,求球的表面积。解:设截面圆心为,连结,设球半径为,则,在中,。点评: 正确应用球的表面积公式,建立平面圆与球的半径之间的关系。例16如图所示,球面上有四个点P、A、B、C,如果PA,PB,PC两两互相垂直,且PA=PB=PC=a,求这个球的表面积。解析:如图,设过A、B、C三点的球的截面圆半径为r,圆心为O,球心到该圆面的距离为d。在三棱锥PABC中,PA,PB,PC两两互相垂直,且PA=PB=PC=a,AB=BC=CA=a,且P在ABC内的射影即是ABC的中心O。由正弦定理,得 =2r,r=a。又根据球的截面的性质,有OO平面ABC,而PO平面ABC,P、O、O共线,球的半径R=。又PO=a,OO=R a=d=,(Ra)2=R2 (a)2,解得R=a,S球=4R2=3a2。点评:本题也可用补形法求解。将PABC补成一个正方体,由对称性可知,正方体内接于球,则球的直径就是正方体的对角线,易得球半径R=a,下略。题型9:球的面积、体积综合问题例17(2006四川文,10)如图,正四棱锥底面的四个顶点在球的同一个大圆上,点在球面上,如果,则球的表面积是( )A B C D(2)半球内有一个内接正方体,正方体的一个面在半
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 天津团员考试试题及答案
- 2025年高压低压电工特种作业操作证进网许可证考试题库(附答案)
- 2025年高校教师资格证之《高等教育心理学》练习题库完整答案详解
- 2025年高级会计师岗位面试真题及答案解析
- 2025年高等院校逻辑学考试真题及答案
- 言语治疗期末试题及答案
- 下属企业公章管理办法
- 网格化管理办法模板
- 绿茶叶种植管理办法
- 规范小型船艇管理办法
- 基孔肯雅热防控知识培训课件
- 海外仓合同范本
- 麻黄现行管理办法
- 市级防汛物资管理办法
- 试油操作规程详解
- 《研学旅行指导师实务》课件-第6章 基(营)地研学课程操作
- 2025年心理辅导员职业资格考试试卷及答案
- 肺炎护理考试试题及答案
- 2025届安徽省蒙城县英语七下期末考试试题含答案
- 肩关节脱位的治疗讲课件
- 极地车辆轻量化复合材料结构-洞察阐释
评论
0/150
提交评论