




已阅读5页,还剩9页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
九年级数学 上册 第一章证明 二 3 线段的垂直平分线 2 三角形的垂心 驶向胜利的彼岸 线段的垂直平分线的作法 已知 线段AB 如图 求作 线段AB的垂直平分线 作法 用尺规作线段的垂直平分线 1 分别以点A和B为圆心 以大于AB 2长为半径作弧 两弧交于点C和D 2 作直线CD 则直线CD就是线段AB的垂直平分线 请你说明CD为什么是AB的垂直平分线 并与同伴进行交流 老师提示 因为直线CD与线段AB的交点就是AB的中点 所以我们也用这种方法作线段的中点 驶向胜利的彼岸 线段的垂直平分线的性质 定理线段垂直平分线上的点到这条线段两个端点距离相等 老师提示 这个结论是经常用来证明两条线段相等的根据之一 如图 AC BC MN AB P是MN上任意一点 已知 PA PB 线段垂直平分线上的点到这条线段两个端点距离相等 驶向胜利的彼岸 线段的垂直平分线的性质定理的逆定理 逆定理到一条线段两个端点距离相等的点 在这条线段的垂直平分线上 如图 PA PB 已知 点P在AB的垂直平分线上 到一条线段两个端点距离相等的点 在这条线段的垂直平分线上 老师提示 这个结论是经常用来证明点在直线上 或直线经过某一点 的根据之一 从这个结果出发 你还能联想到什么 驶向胜利的彼岸 亲历知识的发生和发展 剪一个三角形纸片通过折叠找出每条边的垂直平分线 结论 三角形三条边的垂直平分线相交于一点 老师期望 你能写出规范的证明过程 你想证明这个命题吗 你能证明这个命题吗 观察这三条垂直平分线 你发现了什么 驶向胜利的彼岸 亲历知识的发生和发展 利用尺规作出三角形三条边的垂直平分线 结论 三角形三条边的垂直平分线相交于一点 老师期望 你能写出规范的证明过程 你想证明这个命题吗 你能证明这个命题吗 再观察这三条垂直平分线 你又发现了什么 与同伴交流 驶向胜利的彼岸 命题 三角形三条边的垂直平分线相交于一点 如图 在 ABC中 设AB BC的垂直平分线相交于点P 连接AP BP CP 点P在线段AB的垂直平分线上 PA PB 或AB的中点 同理 PB PC PA PC 点P在线段AB的垂直平分线上 AB BC AC的垂直平分线相交于一点 想一想 若作出 P的角平分线 结论是否也可以得征 咋证三条直线交于一点 基本想法是这样的 我们知道 两条直线相交只有一个交点 要想证明三条直线相交于一点 只要能证明两条直线的交点在第三条直线上即可 这时可以考虑前面刚刚学到的逆定理 驶向胜利的彼岸 定理 三角形三条边的垂直平分线相交于一点 并且这一点到三个顶点的距离相等 如图 在 ABC中 c a b分别是AB BC AC的垂直平分线 已知 c a b相交于一点P 且PA PB PC 三角形三条边的垂直平分线相交于一点 并且这一点到三个顶点的距离相等 老师提示 这是一个证明三条直线交于一点的证明根据 几何的三种语言 挑战自我 驶向胜利的彼岸 已知三角形的一条边及这条边上的高 你能作出三角形吗 老师期望 你能亲自探索出结果并能用尺规作出图形 如果能 能作出几个 所作出的三角形都全等吗 已知等腰三角形的底及底边上的高 你能用尺规作出等腰三角形吗 能作几个 梦想成真 1 已知底边及底边上的高 利用尺规作等腰三角形 已知 线段a h 如图 求作 ABC 使AB AC 且BC a 高AD h 老师期望 你能亲自写出作法 作法 驶向胜利的彼岸 回味无穷 定理三角形三条边的垂直平分线相交于一点 并且这一点到三个顶点的距离相等 如图 在 ABC中 c a b分别是AB BC AC的垂直平分线 已知 c a b相交于一点P 且PA PB PC 三角形三条边的垂直平分线相交于一点 并且这一点到三个顶点的距离相等 驶向胜利的彼岸 习题1 7 驶向胜利的彼岸 1 已知线段a 求作以a为底 以a 2为高的等腰三角形 这个等腰三角形有什么特征 老师提示 先分析 作出示意图形 再按要求去作图 这个等腰三角形有什么特征 习题1 7 驶向胜利的彼岸 2 为筹办一个大型运动会 某市政府打算修建一个大型体育中心 在选址过程中 有人建议该体育中心所在位置应当与该城市的三个城镇中心 如图中P Q R表示 的距离相等 老师期望 养成用数学解释生活的习惯 1 根据上述建议 试在图 1 中画出体育中心G的位置 2 如果这三个城镇的位置如图 2 所示 RPQ是一个钝角 那么根据上述建议
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年航空安全知识测试及答案
- 说明文拓展探究题课件
- 2025年政府会计准则实施能力考试模拟题及答案模拟练习模拟题库
- 机械零件评审与报价课件
- 2025年安全生产法C卷考试题及答案模拟安全改进题
- 2025年安全生产安全操作规程测试题集及答案
- 幼儿园汉服教学课件
- 2025年物业空调工笔试模拟试卷
- 吃穿住话古今二教学课件
- 2025年安全员技能考核题集及解析
- 声光电施工组织计划
- 精神活性物质所致精神障碍者的护理
- GB/T 4666-2009纺织品织物长度和幅宽的测定
- 开学第一课课件-外研版七年级英语上册
- GB/T 13912-2020金属覆盖层钢铁制件热浸镀锌层技术要求及试验方法
- 水轮发电机的基本结构课件
- 《空气动力学》配套教学课件
- 技术交流-太钢不锈钢产品介绍
- 完整版医院体检报告范本
- 彭静山针灸秘验
- 《销售管理实务》ppt课件汇总(完整版)
评论
0/150
提交评论