北师大七年级数学下册第5章5.4探索三角形全等的条件 2 课件_第1页
北师大七年级数学下册第5章5.4探索三角形全等的条件 2 课件_第2页
北师大七年级数学下册第5章5.4探索三角形全等的条件 2 课件_第3页
北师大七年级数学下册第5章5.4探索三角形全等的条件 2 课件_第4页
北师大七年级数学下册第5章5.4探索三角形全等的条件 2 课件_第5页
已阅读5页,还剩20页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

第五章三角形 5 7探索三角形全等的条件 2 复习 在括号内填写适当的理由 1 已知AB DC AC DB 那么 A与 D相等吗 AB DC AC DB BC CB ABC DCB A D 已知 已知 公共边 SSS 全等三角形的对应角相等 解 在 ABC和 DCB中 2 已知AC AD BC BD 那么AB是 DAC的平分线 证明 AC AD BC BD AB AB ABC ABD 1 2 全等三角形的对应角相等 已知 已知 公共边 SSS AB是 DAC的平分线 一 议一议 小明踢球时不慎把一块三角形玻璃打碎为两块 他是否可以只带其中的一块碎片到商店去 就能配一块与原来一样的三角形玻璃呢 如果可以 带哪块去合适呢 为什么 我们知道 如果给出一个三角形三条边的长度 那么因此得到的三角形都是全等 如果已知一个三角形的两角及一边 那么有几种可能的情况呢 每种情况下得到的三角形都全等吗 1 角 边 角 2 角 角 边 做一做 1 角 边 角 若三角形的两个内角分别是60 和80 它们所夹的边为2cm 你能画出这个三角形吗 你画的三角形与同伴画的一定全等吗 2 角 角 边 若三角形的两个内角分别是60 和45 且45 所对的边为3cm 你能画出这个三角形吗 分析 这里的条件与1中的条件有什么相同点与不同点 你能将它转化为1中的条件吗 两角和它们的夹边对应相等的两个三角形全等 简写成 角边角 或 ASA 两角和其中一角的对边对应相等的两个三角形全等 简写成 角角边 或 AAS 练一练 1 如图 已知AB DE A D B E 则 ABC DEF的理由是 2 如图 已知AB DE A D C F 则 ABC DEF的理由是 角边角 ASA 角角边 AAS 3 如图 在 ABC中 B C AD是 BAC的角平分线 那么AB AC吗 为什么 证明 AD是 BAC的角平分线 1 2 角平分线定义 在 ABD与 ACD中 1 2 已证 B C 已知 AD AD 公共边 ABD ACD ASA AB AC 全等三角形对应边相等 1 图中的两个三角形全等吗 请说明理由 全等 因为两角和其中一角的对边对应相等的两个三角形全等 A B C D 练一练 已知 已知 公共边 如图 AB CD AD BC 那么AB CD吗 为什么 AD与BC呢 思考题 证明 AB CD AD BC 已知 1 2 3 4 两直线平行 内错角相等 在 ABC与 CDA中 1 2 已证 AC AC 公共边 3 4 已证 ABC CDA ASA AB CDBC AD 全等三角形对应边相等 利用 角边角 可知 带B块去 可以配到一个与原来全等的三角形玻璃 A B 议一议 1 完成下列推理过程 在 ABC和 DCB中 ABC DCB ASA A B C D O 公共边 2 1 AAS 3 4 2 1CB BC 2 请在下列空格中填上适当的条件 使 ABC DEF 在 ABC和 DEF中 ABC DEF SSS AB DE BC EF AC DF ASA A D AB DE B DEF AC DF ACB F AAS B DEF BC EF ACB F BC EF 想一想 如图 O是AB的中点 A B AOC与 BOD全等吗 为什么 我的思考过程如下 两角与夹边对应相等 AOC BOD 课堂小结 本节课我们经历了对符合两角一边的条件的所有三角形进行画图验证 探索出三角形全等的另两个定理 它们分别是 1 两角和它们的夹边对应相等的两个三角形全等 ASA 2 两角和其中一角的对边对应相等的两个三角形全等 AAS 再加上前面学的 SSS 证明两个三角形全等共有三个定理 我们要学会根据题目给出的条件选用合适的定理来证明两个三角形全等 三角形全等的判定公理2 B E BC EF C F ABC DEF ASA 三角形全等的判定公理3 B E C F AC DF ABC DEF AAS 补充练习 D C B A 1 在 ABC中 AB AC AD是边BC上的中线 证明 BAD CAD 证明 AD是BC边上的中线 BD CD 三角形中线的定义 在 ABD和 ACD中 ABD ACD SSS BAD CAB 全等三角形对应角相等 A B C D E 1 2 2 如图 已知 C E 1 2 AB AD ABC和 ADE全等吗 为什么 解 ABC和 ADE全等 1 2 已知 1 DAC 2 DAC即 BAC DAE在 ABC和 ADC中 ABC ADE AAS B C D E A 3 如图 已知AB AC B C ABD与 ACE全等吗 为什么 ABD ACE ASA AE AD B C B C A AAD AE AAS 4 若 ABC中 A 30 B 70 AC 5cm DEF中 D 70 E 80 DE 5cm 那么两个三角形全等吗 为什么 5cm 5cm 300 300 700 800 700 课后思考题 D C B A 1 在 ABC中 AB AC AD是边BC上的中线 证明 BAD CAD 证明 AD是BC边上的中线 BD CD 三角形中线的定义 在 ABD和 ACD中 ABD ACD SSS BAD CAB 全等三角形对应角相等 A

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论