



全文预览已结束
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
等腰三角形性质教学案例温宿县第五中学 冯婷婷教学目标:知识与技能:了解等腰三角形的有关概念;过程与方法:掌握等腰三角形的性质定理;情感态度与价值观:能运用等腰三角形的性质定理进行简单的计算和证明。教学重点:掌握和应用等腰三角形的性质。教学难点:1、等腰三角形性质的符号表示;2、能灵活运用等腰三角形的性质。教学准备:多媒体、长方形纸片、剪刀教学方法:采用了以观察法、发现法、实验操作法、探究法为主的教学。课型课时:新授、1课时教学设计:1、实验操作,探究规律教师发给每位学生一张方格纸、一张白纸。活动一:在方格纸上画出等腰三角形方格纸上学生画出各种等腰三角形(锐角等腰三角形、钝角等腰三角形、等腰直角三角形)。意图:由于学生对等腰三角形已有初步的认识,通过画各种等腰三角形,进一步加深理解等腰三角形的概念,同时为下面的“折”的实验作好准备。活动二:等腰三角形的概念由方格纸所画等腰三角形,说出等腰三角形及相的腰、底边、顶角、底角的概念。并给出等边三角形的概念:三条边相等的三角形是等边三角形。同时在概念的基础上理解等腰三角形与等边三角形的关系。活动三:一张白纸,如何折出一个等腰三角形思考:这样折出的ABC为什么就是等腰三角形呢?意图:让学生积极地参与到活动中来,都能成为数学活动的一分子。活动四:等腰三角形除了有两条边相等外,还有其他什么结论?(学生小组讨论)由于等腰三角形是轴对称图形,把ABC对折,使两腰AB、AC重叠,则折痕AD就是对称轴,因此可以得出一系列等腰三角形的性质。2、成果展示:等腰三角形的两个底角相等(简称“等边对等角”)“三线合一”等腰三角形底边上的中线、顶角的平分线、底边上的高线互相重合。意图:(1)留给学生充足的时间和空间进行实践、探究和交流。(2)设计活动情境,让学生通过画一画、折一折,合作讨论和探索交流,发现不同的等腰三角形有着类似的特征两底角相等、“三线合一”。由学生探讨、归纳得出规律,充分发挥学生学习的积极性,体现了教学过程中学生的主体地位。3、尝试应用,体现成功:尝试练习一:(1)如果等腰三角形的一个底角为50,则其余两个角为 和 ;(2)如果等腰三角形的顶角为80,则它的一个底角为 ;(3)如果等腰三角形的一个外角为70,则它的三个内角为 ;(4)如果等腰三角形的一个外角为100,则它的三个内角为 ;(5)等边三角形的一个内角为 ,为什么?意图:通过本练习,巩固理角等腰三角形“等边对等角”的性质和等边三角形的性质;特别通过练习(4)设计,得出不同的结果,培养学生思维的开放性与灵活性。尝试练习二:如图,房梁上放一把三角尺(等腰直角三角形),从顶点A挂一条铅垂线,使线经过三角尺斜边的中点O。这根房梁是否保持水平呢?为什么?意图:此例与引入课题时提出的问题模型呼应,体现了数学来源于实践,反过来又作用于实践的辩证唯物主义的观点。培养学生学数学,用数学的意识。4、拓展延伸,提高能力:已知:如图,ABC中,ACB=90,CD是高,A=30求证:BD=AB5、课堂小结,掌握方法(1)小结本堂课的收获。(学生畅所欲言)(2)掌握方法:等腰三角形的性质提供了说明两角相等的常用方法;“三线合一”是说明两条线段相等、两个相等及两条直线互相垂直的依据。6、布置作业,课外拓展(略)三、教学反思1、问题是数学的心脏。问题的解决允许运用直观的方法,还应当鼓励学生不停留在直观的认识上,要进行合情的推理、精确计算,科学地判断。本案例把“问题”贯穿于教学的始终,运用“提出问题探究问题解决问题”的方式,让学生发现规律和运用规律,使学生在长知识的同时,也长智慧、长能力,进一步培养学生良好的思维品质。2、让数学思想方法渗透于课堂教学之中。本案例引导学生通过折一折的手段来运用于“转化”思想,将等腰三角形转化为轴对称变换。同时渗透数学与实践相结合的辩证唯物主义思想,培养学生的应用意识。3、由于学生对等腰三角形的知识已有初步的认识,本课例的难点突破应在等腰三角形的“三线合一”及其应用上,创设有利于学生学习的情境(生活中的事例),通过“折”这一直观方法引导学生进行积极主动地探索、交流去发现,从而习得知识和经验,提高能力和兴趣。4、在数学活动中如何真正让每一位学生积极行动起来,能提出自己的方法和建议,成为数学活动中的一分子,培养学生相对独立地获取知识和能力,逐步学会运用分析、类比、转化等方法。本课例中围绕一个“折”字较为成功地体现了这一点。5、放手让学生自己去发现问题、解决问题,不要小看学生,如果课堂上运用手段恰当、互动的氛围形成
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 汽车展会活动授权及运营合同
- 旅游线路策划合作协议
- 车辆挂靠与汽车维修保养服务协议
- 绿色能源项目厂房抵押贷款协议
- 礼仪仪态培训标准体系
- 2025年汽车销售协议
- 2025年农村房屋转让协议书
- 2025年明股实债协议
- 肾上腺肿瘤病人的护理
- 2025年江苏省镇江市新区中考数学二模试卷
- GB/T 30134-2025冷库管理规范
- 2025年安徽省合肥八中高考最后一卷地理试题及答案
- 浪潮新员工培训体系大纲
- 2025年7月浙江省普通高中学业水平考试历史仿真模拟卷01(含答案)
- 安徽省合肥市45中学2025届七年级数学第二学期期末监测模拟试题含解析
- 中学生成就目标导向下的学习满意度影响机制探讨
- 预防医学知识试题及答案汇编
- 法人变更交接协议书
- 地七年级下册全册知识要点总复习-2024-2025学年七年级地理教学课件(人教版2024)
- 财务培训:AI与财税合规的未来
- 全国农业行业职业技能大赛(农业技术员)理论考试题(附答案)
评论
0/150
提交评论