pid控制.ppt_第1页
pid控制.ppt_第2页
pid控制.ppt_第3页
pid控制.ppt_第4页
pid控制.ppt_第5页
已阅读5页,还剩38页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1 1PID控制原理 闭环控制系统原理框图 图中所示为控制系统的一般形式 被控量y t 的检测值c t 与给定值r t 进行比较 形成偏差值e t 控制器以e t 为输入 按一定的控制规律形成控制量u t 通过u t 对被控对象进行控制 最终使得被控量y t 运行在与给定值r t 对应的某个非电量值上 模拟PID控制系统原理框图 1 1PID控制原理 1 1PID控制原理 PID控制器各环节的作用如下 1 比例环节的数学式表示是 在模拟PID控制器中 比例环节的作用是对偏差量e t 瞬间作出反应 产生相应的控制量u t 使减少偏差e t 向减小的方向变化 控制作用的强弱取决于比例系数Kp Kp越大 控制作用越强 则过渡过程越快 控制过程的静态偏差ess也就越小 但是Kp越大 也越容易产生振荡 增加系统的超调量 系统的稳定性会变差 1 1PID控制原理 2 积分环节的数学式表示是 只要偏差e t 存在 积分控制作用就会就不断的增加 条件是控制器没有饱和 偏差e t 就不断减小 当偏差e t 0时 积分控制作用才会停止 可见 积分环节可以消除系统的偏差 但积分控制同时也会降低系统的响应速度 积分作用太强会增加系统的超调量 系统的稳定性会变差 1 1PID控制原理 3 微分环节的数学式表示是 微分环节可以根据偏差e t 的变化趋势 变化速度 预先给出纠正作用 能在偏差变大之前进行修正 微分作用的引入 将有助于减小超调量 克服振荡 使系统趋于稳定 它加快了系统的跟踪速度 减少调节时间 但微分作用对输入信号的噪声很敏感 对那些噪声较大的系统一般不用微分 或在微分之前先对输入信号进行滤波 1 1PID控制原理 模拟PID控制的算法表达式 其中 是PID控制器的比例系数 是PID控制器的积分系数 是PID控制器的微分系数 1 2数字PID控制 按模拟PID控制算法 以一系列的采样时刻点kT T为采样周期 代替连续时间t 以矩形法数值积分近似代替积分 以一阶后向差分近似代替微分 即 1 2 1位置式PID控制算法 位置式数字PID控制的算法表达式 式中 u k 为第k次采样时刻的控制器的输出值 e k 1 和e k 分别为第 k 1 次和第k次采样时刻的偏差值 只要采样周期T足够小 数字PID控制与模拟PID控制就会十分精确的接近 1 2 2增量式PID控制算法 根据递推原理可得 增量式数字PID控制的算法表达式 式中 如果控制系统采用恒定的采样周期T 只要使用前后三次采样得到的偏差值 就可以求出控制量的增量增量式PID控制算法与位置式PID算法相比 计算量小的多 因此在实际中得到广泛的应用 位置式PID控制算法也可以通过增量式控制算法推出递推计算公式 上式就是目前在计算机控制中广泛应用的数字递推PID控制算法 1 2 2增量式PID控制算法 1 2 2增量式PID控制算法 1 2 3积分分离PID控制算法 在普通PID控制中 引入积分环节的目的主要是为了消除静差 提高控制精度 但在过程的启动 结束或大幅度增减设定时 短时间内系统输出有很大的偏差 会造成PID运算的积分积累 致使控制量超过执行机构可能允许的最大动作范围对应的极限控制量 引起系统较大的振荡 这在生产中是绝对不允许的 积分分离控制基本思路是 当被控量与设定值偏差较大时 取消积分作用 以免由于积分作用使系统稳定性降低 超调量增大 当被控量接近给定量时 引入积分控制 以便消除静差 提高控制精度 具体实现的步骤是 1 根据实际情况 人为设定阈值 0 2 当 e k 时 采用PD控制 可避免产生过大的超调 又使系统有较快的响应 3 当 e k 时 采用PID控制 以保证系统的控制精度 1 2 3积分分离PID控制算法 1 2 3积分分离PID控制算法 积分分离控制算法可表示为 式中 T为采样时间 项为积分项的开关系数 1 2 3积分分离PID控制算法 根据积分分离式PID控制算法得到其程序框图如右图 1 2 4抗积分饱和PID控制算法 积分饱和现象所谓积分饱和现象是指若系统存在一个方向的偏差 PID控制器的输出由于积分作用的不断累加而加大 从而导致u k 达到极限位置 此后若控制器输出继续增大 u k 也不会再增大 即系统输出超出正常运行范围而进入了饱和区 一旦出现反向偏差 u k 逐渐从饱和区退出 进入饱和区愈深则退饱和时间愈长 此段时间内 系统就像失去控制 这种现象称为积分饱和现象或积分失控现象 1 2 4抗积分饱和PID控制算法 执行机构饱和特性 抗积分饱和算法在计算u k 时 首先判断上一时刻的控制量u k 1 是否己超出限制范围 若超出 则只累加负偏差 若未超出 则按普通PID算法进行调节 这种算法可以避免控制量长时间停留在饱和区 1 2 4抗积分饱和PID控制算法 1 2 5梯形积分PID控制算法 在PID控制律中积分项的作用是消除余差 为了减小余差 应提高积分项的运算精度 为此 可将矩形积分改为梯形积分 梯形积分的计算公式为 1 2 6变速积分算法 变速积分的基本思想是 设法改变积分项的累加速度 使其与偏差大小相对应 偏差越大 积分越慢 反之则越快 有利于提高系统品质 设置系数f e k 它是e k 的函数 当 e k 增大时 f减小 反之增大 变速积分的PID积分项表达式为 系数f与偏差当前值 e k 的关系可以是线性的或是非线性的 例如 可设为 1 2 6变速积分算法 变速积分PID算法为 这种算法对A B两参数的要求不精确 参数整定较容易 1 2 6变速积分算法 1 2 7不完全微分PID算法 在PID控制中 微分信号的引入可改善系统的动态特性 但也易引进高频干扰 在误差扰动突变时尤其显出微分项的不足 若在控制算法中加入低通滤波器 则可使系统性能得到改善 不完全微分PID的结构如下图 左图将低通滤波器直接加在微分环节上 右图是将低通滤波器加在整个PID控制器之后 不完全微分算法结构图 1 2 7不完全微分PID算法 不完全微分算法 其中Ts为采样时间 Ti和Td为积分时间常数和微分时间常数 Tf为滤波器系数 1 2 7不完全微分PID算法 1 2 8微分先行PID控制算法 微分先行PID控制的特点是只对输出量y k 进行微分 而对给定值r k 不进行微分 这样 在改变给定值时 输出不会改变 而被控量的变化通常是比较缓和的 这种输出量先行微分控制适用于给定值r k 频繁升降的场合 可以避免给定值升降时引起系统振荡 从而明显地改善了系统的动态特性 微分先行PID控制结构图 1 2 8微分先行PID控制算法 微分部分的传递函数为 式中 相当于低通滤波器 设被控对象为一个延迟对象 采样时间T 20s 延迟时间为4T 输入信号为带有高频干扰的方波信号 1 2 8微分先行PID控制算法 微分先行PID控制方波响应 普通PID控制方波响应 1 2 8微分先行PID控制算法 微分先行PID控制方波响应控制器输出 普通PID控制方波响应控制器输出 1 2 8微分先行PID控制算法 在计算机控制系统中 某些系统为了避免控制作用过于频繁 消除由于频繁动作所引起的振荡 可采用带死区的PID控制算法 控制算式为 式中 e k 为位置跟踪偏差 e0是一个可调参数 其具体数值可根据实际控制对象由实验确定 若e0值太小 会使控制动作过于频繁 达不到稳定被控对象的目的 若e0太大 则系统将产生较大的滞后 1 2 9带死区的PID控制算法 1 2 9带死区的PID控制算法 带死区的PID控制算法程序框图 1 3PID控制的参数整定 1 PID控制的参数整定是指如何确定PID控制器的比例系数Kp 积分系数Ti 微分系数Td和采样周期T的具体数值 整定的实质是通过选择合适的PID控制器参数 改善系统的动态和静态指标 取得最佳的控制效果 2 PID控制器参数整定的方法很多 归纳起来可分为两大类 即理论计算整定法和工程整定法 3 工程整定法特点不需要事先知道过程的数学模型 直接在过程控制系统中进行现场整定方法简单 计算简便 易于掌握 4 工程整定法有凑试法 临界比例法 经验法 衰减曲线法和响应曲线法等 1 3 1临界比例法 将PID控制器 置于纯比例控制作用下 即 积分系数Ti 微分系数Td 0 用阶跃信号作为输入信号 然后从小到大逐渐改变比例系数Kp 直到使系统输出产生等幅振荡过程 此时的比例系数称为临界比例系数Ku 相邻两个波峰间的时间间隔 称为临界振荡周期Tu 则根据经验公式 PID控制器的参数可按下表取值 1 3 2衰减曲线法 将PID控制器 置于纯比例控制作用下 即 积分系数Ti 微分系数Td 0 用阶跃信号作为输入信号 然后从大到小逐渐改变比例系数Kp 直到使系统输出产生1 4的幅值衰减过程 如下图所示 令此时的比例系数为K2 相邻两个波峰 幅值相差4倍 间的时间间隔为T2 则根据经验公式 PID控制器的参数可按下表取值 1 3 2衰减曲线法 1 3 3采样周期 频率 的选择 数字PID控制器中采样频率选取的步骤 1 将数字PID控制器 置于纯比例控制作用下 即 积分系数Ti 微分系数Td 0 先使用一个较大的采样频率 2 用阶跃信号作为输入信号 然后从小到大逐渐改变比例系数Kp 直到使系统输出产生等幅振荡过程 3 由于阶跃响应的上升部分是频率变换最快的部分 所以也是最难跟踪的部分 如果希望跟踪效果比较好的话 则需要在上升时间内至少采到10个样本 而这等价于采样频率为阶跃响应等幅荡频率的35倍 具体推导略 1 3 4采样周期 频率 选取的一般原则 1 根据采样定理 采样频率必须大于输入信号最高频率的2倍 如果系统中有高频扰动 则采样频率必须大于高频扰动信号最高频率的2倍 2

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论