




已阅读5页,还剩5页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
第六章实数6.1.1平方根第一课时【教学目标】知识与技能:通过实际生活中的例子理解算术平方根的概念,会求非负数的算术平方根并会用符号表示;过程与方法:通过生活中的实例,总结出算术平方根的概念,通过计算非负数的算术平方根,真正掌握算术平方根的意义。情感态度与价值观:通过学习算术平方根,认识数与人类生活的密切联系,建立初步的数感和符号感,发展抽象思维,为学生以后学习无理数做好准备教学重点:算术平方根的概念和求法。教学难点:算术平方根的求法。教具准备:三块大小相等的正方形纸片;学生计算器。教学方法:自主探究、启发引导、小组合作【教学过程】一、情境引入:问题:学校要举行美术作品比赛,小欧很高兴,他想裁出一块面积为225dm的正方形画布,画上自己得意的作品参加比赛,这块正方形画布的边长应取多少?二、探索归纳:1.探索:学生能根据已有的知识即正方形的面积公式:边长的平方等于面积,求出正方形画布的边长为5dm接下来教师可以再深入地引导此问题:如果正方形的面积分别是1、9、16、36、,那么正方形的边长分别是多少呢?学生会求出边长分别是1、3、4、6、,接下来教师可以引导性地提问:上面的问题它们有共同点吗?它们的本质是什么呢?这个问题学生可能总结不出来,教师需加以引导。上面的问题,实际上是已知一个正数的平方,求这个正数的问题。2.归纳:算术平方根的概念:一般地,如果一个正数x的平方等于a,即x2=a那么这个正数x叫做a的算术平方根。算术平方根的表示方法:a的算术平方根记为,读作“根号a”或“二次很号a”,a叫做被开方数。三、应用:例1、求下列各数的算术平方根1000.00010解:因为, 102=100=所以100的算术平方根是10,即=10=;因为=,所以的算术平方根是,即=因为=,所以的算术平方根是,即=;因为0.012=0.0001=,所以0.0001的算术平方根是0.01,即=0.01;因为02=0=,所以0的算术平方根是0,即=0=。注:根据算术平方根的定义解题,明确平方与开平方互为逆运算;求带分数的算术平方根,需要先把带分数化成假分数,然后根据定义去求解;0的算术平方根是0。由此例题教师可以引导学生思考如下问题:你能求出1,36,100的算术平方根吗?任意一个负数有算术平方根吗?归纳:一个正数的算术平方根有1个;0的算术平方根是0;负数没有算术平方根。即:只有非负数有算术平方根,如果x=有意义,那么x0, a 0。注:a0且0这一点对于初学者不太容易理解,教师不要强求,可以在以后的教学中慢慢渗透。例2、求下列各式的值:(1)、 (2)、 (3) (4)例3、求下列各数的算术平方根:32 43 (-10) 2- 根据学生的学习能力和理解能力可进行如下总结:1、由=6=,可得=a(a 0)2、由=11可得=- a(a 0)教师需强调a=0时对两种情况都成立。四、随堂练习:1、算术平方根等于本身的数有。2、求下列各式的值(1) (2) (3) (4) 五、课堂小结1、这节课学习了什么呢?2、算术平方根的具体意义是怎么样的?3、怎样求一个正数的算术平方根?六、布置作业课本第44页习题第1、2题七、教学反思6.1.2平方根第2课时【教学目标】知识与技能:会用计算器求算术平方根;了解无限不循环小数的特点;会用算术平方根的知识解决实际问题。过程与方法:通过折纸认识第一个无理数,并通过估计它的大小认识无限不循环小数的特点。用计算器计算算术平方根,使学生了解利用计算器可以求出任意一个正数的算术平方根,再通过一些特殊的例子找出一些数的算术平方根的规律,最后让学生感受算术平方根在实际生活中的应用。情感态度与价值观:通过探究的大小,培养学生的估算意识,了解两个方向无限逼近的数学思想,并且锻炼学生克服困难的意志,建立自信心,提高学习热情。教学重点:认识无限不循环小数的特点,会估算一些数的算术平方根。会用算术平方根的知识解决实际问题。教学难点:认识无限不循环小数的特点,会估算一些数的算术平方根。教学方法:自主探究、启发引导、小组合作教学过程:一、通过实验引入:怎样用两个面积为1的小正方形拼成一个面积为2的大正方形?如图,把两个小正方形沿对角线剪开,将所得的4个直角三角形拼在一起,就得到一个面积为2的大正方形。你知道这个大正方形的边长是多少吗?设大正方形的边长为x,则x 2=2,由算术平方根的意义可知x= =,所以大正方形的边长为。二、讨论的大小:由上面的实验我们认识了,它的大小是多少呢?它所表示的数有什么特征呢?下面我们讨论的大小。(略,见书42页)如此进行下去,我们发现它的小数位数无限,且小数部分不循环,像这样的数我们成为无限不循环小数。=1.41421356.注:这种估算体现了两个方向向中间无限逼近的数学思想,学生第一次接触,不好理解,教师在讲解时速度要放慢,可能需要讲两遍。=1.41421356.,是个无限不循环小数,但是很抽象,没有办法全部表示出来它的大小,类似这样的数还有很多,比如等,圆周率也是一个无限不循环小数。三、用计算器求算术平方根:大多数计算器都有“”键,用它可以求出一个有理数的算术平方根或近似值。例1、用计算器求下列各式的值:(1);(2) (精确到0.001)解答略注:不同品牌的计算器,按键的顺序可能有所不同。四、探索规律:(1)利用计算器计算,并将计算结果填在表中,你发现了什么规律?.(2)用计算器计算(结果精确到0.001),并利用你发现的规律写出、的近似值。你能根据的值求出的值吗?五、实际应用:例1、小丽想用一块面积为2400cm的正方形纸片,沿着边的方向裁出一块面积为2300cm的长方形纸片,使它的长与宽之比为3:2,不知道能否裁出来,正在发愁,小明见了说:“别发愁,一定能用一块面积大的纸片裁出一块面积小的纸片。”你同意小明的说法吗?小丽能否用这块纸片裁出符合要求的纸片吗?分析:学生一般认为一定能用一块面积大的纸片裁出一块面积小的纸片。通过计算和讲解纠正这种错误的认识(解略,见书44页)六、随堂练习:书44页,练习1、2题七、课堂小结1、被开方数增大或缩小时,其相应的算术平方根也相应地增大或缩小,因此我们可以利用夹值的方法来求出算术平方根的近似值;2、利用计算器可以求出任意正数的算术平方根的近似值;3、被开方数扩大(或缩小)与它的算术平方根扩大(或缩小)的规律是怎样的呢?4、怎样的数是无限不循环小数?八、布置作业课本第47页习题6、1第5题教学反思:6.1.3平方根第三课时【教学目标】知识与技能了解平方根的概念,会用根号表示正数的平方根;了解开平方与平方互为逆运算,会用平方运算求某些非负数的平方根过程与方法通过学习平方根,进一步建立数感和符号感,发展抽象思维。通过对正数平方根特点的探究,了解平方根与算术平方根的区别和联系,体验类比、化归等问题解决数学思想方法的运用,提高学生对问题的迁移能力。情感、态度与价值观通过对实际生活中问题的解决,让学生体验数学与生活实际是紧密联系着的。通过探究活动培养动手能力和锻炼克服困难的意志,建立自信心,提高学习热情。教学重点:了解开方和乘方互为逆运算,弄懂平方根与算术平方根的区别和联系。教学难点:平方根与算术平方根的区别和联系。教学方法:自主探究、启发引导、小组合作教学过程一、情境导入如果一个数的平方等于9,这个数是多少?23教学反思:6.1.3平方根第三课时【教学目标】知识与技能了解平方根的概念,会用根号表示正数的平方根;了解开平方与平方互为逆运算,会用平方运算求某些非负数的平方根过程与方法通过学习平方根,进一步建立数感和符号感,发展抽象思维。通过对正数平方根特点的探究,了解平方根与算术平方根的区别和联系,体验类比、化归等问题解决数学思想方法的运用,提高学生对问题的迁移能力。情感、态度与价值观通过对实际生活中问题的解决,让学生体验数学与生活实际是紧密联系着的。通过探究活动培养动手能力和锻炼克服困难的意志,建立自信心,提高学习热情。教学重点:了解开方和乘方互为逆运算,弄懂平方根与算术平方根的区别和联系。教学难点:平方根与算术平方根的区别和联系。教学方法:自主探究、启发引导、小组合作教学过程一、情境导入如果一个数的平方等于9,这个数是多少?讨论:这样的数有两个,它们是3和3.注意(-3)2()=9中括号的作用又如:x 2 =,则x等于多少呢?二、探索归纳:1、平方根的概念:如果一个数的平方等于a,那么这个数就叫做a的平方根即:如果x2=a,那么x叫做a的平方根求一个数的平方根的运算,叫做开平方例如:3的平方等于9,9的平方根是3,所以平方与开平方互为逆运算2、观察:课本P45的图6.1-2.图6.1-2中的两个图描述了平方与开平方互为逆运算的运算过程,揭示了开平方运算的本质并根据这个关系说出1,4,9的平方根例4求下列各数的平方根。(1)100(2)(3)0.253、按照平方根的概念,请同学们思考并讨论下列问题:正数的平方根有什么特点?0的平方根是多少?负数有平方根吗?一个是正数有两个平方根,即正数进行开平方运算有两个结果,一个是负数没有平方根,即负数不能进行开平方运算,符号:正数a的算术平方根可用表示;正数a的负的平方根可用-表示例5求下列各式的值。(1)(2)(3)归纳:平方根和算术平方根两者既有区别又有联系区别在于正数的平方根有两个,而它的算术平方根只有一个;联系在于正数的负平方根是它的算术平方根的相反数,根据它的算术平方根可以立即写出它的负平方根。三、练习课本P4小练习1、2、3、4四、小结:1、什么叫做一个数的平方根?2、正数、0、负数的平方根有什么规律?3、怎样求出一个数的平方根?数a的平方怎样表示?五、作业P习题、第3、8题。教学反思6.2立方根【教学目标】知识与技能:了解立方根的概念和表示方法,并会求一个数的立方根;会用计算器求一个数的立方根。过程与方法:从具体的计算出发归纳出立方根的概念,然后讨论立方与开立方的关系,研究立方根的特征,最后介绍实用计算器求立方根的方法。情感态度与价值观:通过探索立方根的特征,培养学生独立思考和小组交流的能力;通过立方根与平方根的比较使学生学会类比学习的数学思想;通过探讨一个数的立方根与它的相反数的立方根的关系,可以将求负数的立方根转化为求正数的立方根的问题,培养学生的转化思想。教学重点:立方根的概念和求法教学难点:立方根的求法。教学过程:一、情景引入:要制作一种容积为27m3的正方体形状的包装箱,这种包装箱的边长应该是多少?二、探索归纳:1.探索:设这种包装箱的边长为xm,则x3=27这就是要求一个数,使它的立方等于27.因为33=27=,所以x=3,即这种包装箱的边长应为3m2.归纳:立方根的概念:一般地,如果一个数的立方等于a,那么这个数叫做a的立方根或三次方根。立方根的表示方法:如果x3=a=,那么x叫做a的立方根。记作x=,读作三次根号a。其中a是被开方数,3是根指数,中的根指数3不能省略。开立方的概念:求一个数的立方根的运算,叫做开立方。开立方与立方互为逆运算,可以根据这种关系求一个数的立方根。3、探索立方根的特点:根据立方根的意义填空,思考正数、0、负数的立方根各有什么特点?(1)因为23=8=,所以8的立方根是();(2)因为()3=0.064=,所以0.064的立方根是();(3)因为()3=0=,所以0的立方根是();(4)因为()3-=-8=,所以-8-的立方根是();(5)因为()3=,所以的立方根是()。学生独立完成后,教师要引导学生从正、负数和零三方面去归纳总结立方根的特点。归纳:正数的立方根是正数;负数的立方根是负数;0的立方根是0.4.探究互为相反数的两个数的立方根的关系:填空:因为,所以;因为,所以由上面两个例子可归纳出:一般地,。注:这个关系对于正数、负数、零都成立。求负数的立方根时,可以先求出这个负数的绝对值的立方根,然后再确它的相反数。三、应用:例1、求下列各式的值:(1) (2) (3)例3、用计算器计算、的值,你发现了什么?并总结出来。用计算器计算,求、的近似值。由此发现:一个数扩大或缩小1000倍时,它的立方根扩大或缩小10倍。四、随堂练习:1、立方根等于本身的数是,如果=1-a,-则=a。2、-的立方根是,(-4) 3 (-的立方根是。3、已知3+x+16的立方根是4,求2+x+4的算术平方根。4、比较大小: 3,五、课堂小结1.立方根和开立方的定义2.正数、0、负数的立方根的特征3.立方根与平方根的异同六、布置作业课本第页习题.2第1、3、5、6题;教学反思:6.3.1实数第一课时【教学目标】知识与技能:了解无理数和实数的概念以及实数的分类;知道实数与数轴上的点具有一一对应的关系。过程与方法:在数的开方的基础上引进无理数的概念,并将数从有理数的范围扩充到实数的范围,从而总结出实数的分类,接着把无理数在数轴上表示出来,从而得到实数与数轴上的点是一一对应的关系。情感态度与价值观:通过了解数系扩充体会数系扩充对人类发展的作用;敢于面对数学活动中的困难,并能有意识地运用已有知识解决新问题。教学重点:了解无理数和实数的概念;对实数进行分类。教学难点:对无理数的认识。【教学过程】一、复习引入无理数:利用计算器把下列有理数3、写成小数的形式,它们有什么特征?发现上面的有理数都可以写成有限小数或无限循环小数的形式归纳:任何一个有理数(整数或分数)都可以写成有限小数或者无限循环小数的形式,反过来,任何有限小数或者无限循环小数也都是有理数。通过前面的学习,我们知道有很多数的平方根或立方根都是无限不循环小数,把无限不循环小数叫做无理数。比如-等都是无理数。3. 14159265.也是无理数。二、实数及其分类:1、实数的概念:有理数和无理数统称为实数。2、实数的分类:按照定义分类如下:3、实数与数轴上点的关系:我们知道每个有理数都可以用数轴上的点来表示。物理是合乎是否也可以用数轴上的点表示出来吗?活动1:直径为1个单位长度的圆其周长为,把这个圆放在数轴上,圆从原点沿数轴向右滚动一周,圆上的一点由原点到达另一个点,这个点的坐标就是,由此我们把无理数用数轴上的点表示了出来。活动2:在数轴上,以一个单位长度为边长画一个正方形,则其对角线的长度就是以原点为圆心,正方形的对角线为半径画弧,与正半轴的交点就表示,与负半轴的交点就是。事实上通过这种做法,我们可以把每一个无理数都在数轴上表示出来,即数轴上有些点表示无理数。归纳:实数与数轴上的点是一一对应的。即没一个实数都可以用数轴上的点来表示;反过来,数轴上的每一个点都表示一个实数。对于数轴上的任意两个点,右边的点所表示的实数总比左边的点表示的实数大。三、应用:例1、下列实数中,无理数有哪些?,3.14,0,10.121121112.,解略注:带根号的数不一定是无理数,比如,它其实是有理数4;无限小数不一定是无理数,无限不循环小数一定是无理数。比如0,10.121121112.四、随堂练习:1、判断下列说法是否正确:无限小数都是无理数;无理数都是无限小数;带根号的数都是无理数;所有的有理数都可以用数轴上的点来表示,反过来,数轴上所有的点都表示有理数;所有实数都可以用数轴上的点来表示,反过来,数轴上的所有的点都表示实数。2
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 压力管道取证培训课件
- 2025年环保科技行业清洁能源技术研发前景报告
- 2025年汽车行业无人驾驶汽车发展前景研究报告
- 2025年医疗健康产业对老龄化社会的应对策略与发展前景研究报告
- 嵩县2025年河南嵩县引进研究生学历人才78人笔试历年参考题库附带答案详解
- 南昌市2025江西南昌航空大学科技学院图书管理员招聘1人笔试历年参考题库附带答案详解
- 2025重庆某国有企业招聘财务助理实习生2人笔试参考题库附带答案详解
- 2025江西吉安市青原区两山人力资源服务有限公司招聘5人笔试参考题库附带答案详解
- 2025新疆兵团可克达拉市广电网络有限责任公司招聘4人笔试参考题库附带答案详解
- 2025年浙江省农发集团校园招聘(67人)笔试参考题库附带答案详解
- 2025年领导干部任前廉政法规知识考试题库(含答案)
- 2025年四川基层法律服务工作者执业核准考试仿真试题及答案一
- 信息技术基础教程(WPS版)课件 第3章 Windows 10 操作系统的使用
- 小鹿斑比题目及答案
- 中学知识竞赛试题及答案
- 2024超声法检测混凝土缺陷技术规程
- 2025-2030中国建筑行业供应链金融发展现状与前景分析
- 2025-2026学年人教版(2024)初中物理八年级上册教学计划及进度表
- 《民间纠纷调解》全套教学课件
- 医院环境感染监测制度
- 医院一键式报警系统建设与实施
评论
0/150
提交评论