高中数学平面向量知识点总结.doc_第1页
高中数学平面向量知识点总结.doc_第2页
高中数学平面向量知识点总结.doc_第3页
高中数学平面向量知识点总结.doc_第4页
高中数学平面向量知识点总结.doc_第5页
免费预览已结束,剩余3页可下载查看

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

高中数学必修4之平面向量知识点归纳 一.向量的基本概念与基本运算1、向量的概念:向量:既有大小又有方向的量 向量不能比较大小,但向量的模可以比较大小零向量:长度为0的向量,记为,其方向是任意的,与任意向量平行单位向量:模为1个单位长度的向量平行向量(共线向量):方向相同或相反的非零向量 相等向量:长度相等且方向相同的向量 2、向量加法:设,则+=(1);(2)向量加法满足交换律与结合律;,但这时必须“首尾相连”3、向量的减法: 相反向量:与长度相等、方向相反的向量,叫做的相反向量向量减法:向量加上的相反向量叫做与的差,作图法:可以表示为从的终点指向的终点的向量(、有共同起点)4、实数与向量的积:实数与向量的积是一个向量,记作,它的长度与方向规定如下:(); ()当时,的方向与的方向相同;当时,的方向与的方向相反;当时,方向是任意的5、两个向量共线定理:向量与非零向量共线有且只有一个实数,使得=6、平面向量的基本定理:如果是一个平面内的两个不共线向量,那么对这一平面内的任一向量,有且只有一对实数使:,其中不共线的向量叫做表示这一平面内所有向量的一组基底二.平面向量的坐标表示1平面向量的坐标表示:平面内的任一向量可表示成,记作=(x,y)。 2平面向量的坐标运算:(1) 若,则(2) 若,则(3) 若=(x,y),则=(x, y)(4) 若,则(5) 若,则若,则三平面向量的数量积1两个向量的数量积:已知两个非零向量与,它们的夹角为,则=cos叫做与的数量积(或内积) 规定2向量的投影:cos=R,称为向量在方向上的投影投影的绝对值称为射影3数量积的几何意义: 等于的长度与在方向上的投影的乘积4向量的模与平方的关系:5乘法公式成立: ;(第1题)6平面向量数量积的运算律:交换律成立:对实数的结合律成立:分配律成立:特别注意:(1)结合律不成立:;(2)消去律不成立不能得到(3)=0不能得到=或=7两个向量的数量积的坐标运算:已知两个向量,则=8向量的夹角:已知两个非零向量与,作=, =,则AOB= ()叫做向量与的夹角cos=当且仅当两个非零向量与同方向时,=00,当且仅当与反方向时=1800,同时与其它任何非零向量之间不谈夹角这一问题9垂直:如果与的夹角为900则称与垂直,记作10两个非零向量垂直的充要条件:O平面向量数量积的性质一、选择题1在ABC中,ABAC,D,E分别是AB,AC的中点,则( )A与共线B与共线 C与相等 D与相等2下列命题正确的是( )A向量与是两平行向量 B若a,b都是单位向量,则abC若,则A,B,C,D四点构成平行四边形D两向量相等的充要条件是它们的始点、终点相同3平面直角坐标系中,O为坐标原点,已知两点A(3,1),B(1,3),若点C满足a b ,其中 a,bR,且ab1,则点C的轨迹方程为( )A3x2y110 B(x1)2(y1)25 C2xy0Dx2y504已知a、b是非零向量且满足(a2b)a,(b2a)b,则a与b的夹角是ABCD5已知四边形ABCD是菱形,点P在对角线AC上(不包括端点A,C),则A(),(0,1)B(),(0,)C(),(0,1)D(),(0,)6ABC中,D,E,F分别是AB,BC,AC的中点,则( )AB C D7若平面向量a与b的夹角为60,|b|4,(a2b)(a3b)72,则向量a的模为( )A2B4C6D128点O是三角形ABC所在平面内的一点,满足,则点O是ABC的( )A三个内角的角平分线的交点B三条边的垂直平分线的交点C三条中线的交点D三条高的交点9在四边形ABCD中,a2b,4ab,5a3b,其中a,b不共线,则四边形ABCD为( )A平行四边形B矩形C梯形D菱形(第10题)10如图,梯形ABCD中,|,则相等向量是( )A与B与C与D与二、填空题11已知向量(k,12),(4,5),(k,10),且A,B,C三点共线,则k 12已知向量a(x3,x23x4)与相等,其中M(1,3),N(1,3),则x 13已知平面上三点A,B,C满足|3,|4,|5,则的值等于 14给定两个向量a(3,4),b(2,1),且(amb)(ab),则实数m等于 15已知A,B,C三点不共线,O是ABC内的一点,若0,则O是ABC的 16设平面内有四边形ABCD和点O,a,b,c, d,若acbd,则四边形ABCD的形状是 三、解答题17已知点A(2,3),B(5,4),C(7,10),若点P满足(R),试求 为何值时,点P在第三象限内?(第18题)18如图,已知ABC,A(7,8),B(3,5),C(4,3),M,N,D分别是AB,AC,BC的中点,且MN与AD交于F,求19如图,在正方形ABCD中,E,F分别为AB,BC的中点,求证:AFDE(利用向量证明)(第19题)20已知向量a(cos ,sin ),向量b(,1),则|2ab|的最大值一、选择题(第1题)1B解析:如图,与,与不平行,与共线反向2A解析:两个单位向量可能方向不同,故B不对若,可能A,B,C,D四点共线,故C不对两向量相等的充要条件是大小相等,方向相同,故D也不对3D解析:提示:设(x,y),(3,1),(1,3),a (3a,a),b (b,3b),又ab (3ab,a3b), (x,y)(3ab,a3b), ,又ab1,由此得到答案为D4B解析:(a2b)a,(b2a)b,(a2b)aa22ab0,(b2a)bb22ab0, a2b2,即|a|b|a|22|a|b|cos 2|a|2cos解得cos a与b的夹角是5A解析:由平行四边形法则,又,由 的范围和向量数乘的长度,(0,1)6D解析:如图, 7C解析:由(a2b)(a3b)72,得a2ab6b272而|b|4,ab|a|b|cos 602|a|, |a|22|a|9672,解得|a|68D解析:由 ,得, 即()0,故0,同理可证, O是ABC的三条高的交点9C解析:8a2b2,且| 四边形ABCD为梯形10D解析:与,与,与方向都不相同,不是相等向量二、填空题11解析:A,B,C三点共线等价于,共线,(4,5)(k,12)(4k,7),(k,10)(4,5)(k4,5),又 A,B,C三点共线, D(第13题) 5(4k)7(k4), k121解析: M(1,3),N(1,3), (2,0),又a, 解得 x11325解析:思路1: 3,4,5, ABC为直角三角形且ABC90,即,0, ()()225思路2: 3,4,5,ABC90, cosCAB,cosBCA根据数积定义,结合图(右图)知0,cosACE45()16,cosBAD35()9 01692514解析:amb(32m,4m),ab(1,5)(第15题) (amb)(ab), (amb)(ab)(32m)1(4m)50m15答案:重心解析:如图,以,为邻边作AOCF交AC于点E,则,又 , 2O是ABC的重心16答案:平行四边形解析: acbd, abdc, 四边形ABCD为平行四边形三、解答题171 解析:设点P的坐标为(x,y),则(x,y)(2,3)(x2,y3)(5,4)(2,3)(7,10)(2,3)(3,)(5,7)(第18题)(35,7) , (x2,y3)(35,17) 即要使点P在第三象限内,只需解得 118(,2)解析: A(7,8),B(3,5),C(4,3),(4,3),(3,5)又 D是BC的中点, ()(43,35)(7,8)(,4)又 M,N分别是AB,AC的中点, F是AD的中点, (,4)(,2)19证明:设a,b,则ab,ba (ab)(ba)b2a2ab(第19题)又,且, a2b2,ab0 0,本题也可以建平面直角坐标系后进行证明 20分析:思路1:2ab(2cos ,2sin 1), |2ab|2(2cos )2(2sin 1)284sin 4cos 又4sin 4co

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论