




已阅读5页,还剩1页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
(2011北京文)(17)(本小题共14分) 如图,在四面体中,点分别是棱的中点。()求证:平面;()求证:四边形为矩形;( )是否存在点,到四面体六条棱的中点 的距离相等?说明理由。(2011天津文)17.(本小题满分13分)如图,在四棱锥P-ABCD中,底面ABCD为平行四边形,AD=AC=1,O为AC的中点,PO平面ABCD,PO=2,为PD的中点.()证明PB平面;()证明AD平面PAC;()求直线与平面ABCD所成角的正切值.(2011安徽文)(19)(本小题满分13分)如图,为多面体,平面与平面垂直,点在线段上,都是正三角形。()证明直线;()求棱锥的体积.(2011福建文)20.(本小题满分12分)如图,四棱锥P-ABCD中,PA底面ABCD,ABAD,点E在线段AD上,且CEAB。(1) 求证:CE平面PAD;(11)若PA=AB=1,AD=3,CD=,CDA=45,求四棱锥P-ABCD的体积【解析】(1)证明:因为PA平面ABCD,CE平面ABCD,所以PACE,因为ABAD,CEAB,所以CEAD,又PAAD=A,所以CE平面PAD.(2011辽宁文)(18)(本小题满分12分)如图,四边形ABCD为正方形,QA平面ABCD,PDQA,QA=AB=PD。(I)证明:PQ平面DCQ;(II)求棱锥Q-ABCD的体积与棱锥P-DCQ的体积的比值。(2011山东文)19.(本小题满分12分)如图,在四棱台中,平面,底面是平行四边形,60. 来源:学_科_网()证明:;()证明:.(2011湖南文)19.(本小题满分12分) 如图3,在圆锥中,已知=, 的直径,点在上,且,为的中点.()证明:平面;()求直线 和平面所成角的正弦值。(2011江苏)16、(本小题满分14分)如图,在四棱锥中,平面PAD平面ABCD,AB=AD,BAD=60,E、F分别是AP、AD的中点求证:(1)直线EF平面PCD;(2)平面BEF平面PAD解析:(1)因为E、F分别是AP、AD的中点,又直线EF平面PCD(2) F是AD的中点,又平面PAD平面ABCD,所以,平面BEF平面PAD。(2011江西文)18.(本小题满分12分)如图,在交AC于 点D,现将(1)当棱锥的体积最大时,求PA的长;(2)若点P为AB的中点,E为解:(1)设,则 令 则 单调递增极大值单调递减(2011全国2文)(20)(本小题满分l2分)(注意:在试题卷上作答无效)如图,四棱锥中, ,,侧面为等边三角形. . (I) 证明:(II) 求AB与平面SBC所成角的大小。【思路点拨】第(I)问的证明的突破口是利用等边三角形SAB这个条件,找出AB的中点E,连结SE,DE,就做出了解决这个问题的关键辅助线。(II)本题直接找线面角不易找出,要找到与AB平行的其它线进行转移求解。【精讲精析】证明:(I)取AB中点E,连结DE,则四边形BCDE为矩形,DE=CB=2。连结SE,则又SD=1,故所以为直角。由,得,所以.SD与两条相交直线AB、SE都垂直。所以(II)由知,(2011全国新课标文)(18)(本小题满分12分)如图,四棱锥中,底面为平行四边形。底面 。(I)证明:(II)设,求棱锥的高。3 解答题:接答应写出文字说明、证明过程或演算步骤(本大题共6小题,共75分)P. (2011陕西文)(本小题满分12分)如图,在ABC中,ABC=45,BAC=90,AD是BC上的高,沿AD把ABD折起,使BDC=90。(1)证明:平面平面;(2)设BD=1,求三棱锥D的表面积。(2011四川文)19(本小题共l2分)如图,在直三棱柱ABCA1B1C1中,BAC=90,AB=AC=AA1=1,延长A1C1至点P,使C1PA1C1,连接AP交棱CC1于D()求证:PB1平面BDA1;()求二面角AA1DB的平面角的余弦值;本小题主要考查直三棱柱的性质、线面关系、二面角等基本知识,并考查空间想象能力和逻辑推理能力,考查应用向量知识解决问题的能力解法一:
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2.3周而复始的循环 教学设计 2023-2024学年教科版(2019)高中信息技术必修1
- 欣赏 混声合唱《黄河船夫曲》教学设计-2025-2026学年小学音乐花城版六年级下册-花城版
- 抢险照明工程维修方案(3篇)
- 暖丰电热工程方案(3篇)
- 上海市食品(保健食品)原辅材料购销合同(版)2篇
- 彭州工程检测中心方案(3篇)
- 配套工程结算方案(3篇)
- 合同范本之物流公司运输合同4篇
- 闵行区工厂拆除工程方案(3篇)
- 绿化工程扩建方案(3篇)
- 儿科高危药品与急救药品管理指南
- 《电机与拖动基础》课件(共十一章)
- 2025至2030中国体检医院行业发展趋势分析与未来投资战略咨询研究报告
- 2024年成人高考成考(专升本)大学语文试题及解答参考
- 肥胖患者的长期体重管理及药物临床应用指南解读课件
- 2025至2030中国环境监测行业市场发展现状及投资前景与策略报告
- 阀门采购管理办法
- 2025年中级注安《安全生产管理》真题及答案
- 企业外来人员管理办法
- 儿童生长曲线课件
- 中国饮食发展史课件
评论
0/150
提交评论