免费预览已结束,剩余1页可下载查看
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
第56课 立体几何中的翻折问题 1.(2012东城一模)如图,在边长为的正三角形中,分别为,上的点,且满足.将沿折起到的位置,使平面平面,连结,.(如图)(1)若为中点,求证:平面;(2)求证:. 证明:(1)取中点,连结在中,分别为的中点, ,且 , ,且, ,且 四边形为平行四边形, 又平面,且平面, 平面 (2) 取中点,连结.,而,即是正三角形. 又, . 在图2中有. 平面平面,平面平面,平面. 又平面,. 2(2012海淀一模)已知菱形中, (如图1所示),将菱形沿对角线翻折,使点翻折到点的位置(如图2所示),点,分别是,的中点(1)证明: /平面;(2)证明:;(3)当时,求线段的长证明:(1)点分别是的中点, 又平面,平面, 平面 (2)在菱形中,设为的交点, 则 在三棱锥中,.又 平面 又平面,(3)连结在菱形中, 是等边三角形, 为中点, 又 , 平面,即平面 又 平面, , 3(2012汕头二模)如图,在边长为4的菱形中,点、分别在边、上点与点、不重合,沿将翻折到的位置,使平面平面(1)求证:平面;(2)记三棱锥的体积为,四棱锥的体积为,且,求此时线段的长【解析】(1)证明:在菱形中, , 平面平面,平面平面,且平面,平面, 平面,平面(2)设由(1)知,平面, 为三棱锥及四棱锥的高, , , , , 4(2012西城一模)如图,矩形中,分别在线段和上,将矩形沿折起记折起后的矩形为,且平面平面(1)求证:平面;(2)若,求证:; (3)求四面体体积的最大值【解析】(1)证明:四边形,都是矩形, , 四边形是平行四边形, , 平面, 平面(2)证明:设平面平面,且, 平面, 又 , 四边形为正方形, 平面, (3)设,则,其中由(
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年透明包装材料研发项目可行性研究报告及总结分析
- 薄板CMT焊接工艺研究
- 2025年企业系统集成服务合同协议
- 2025年线上虚拟现实平台开发可行性研究报告及总结分析
- 2020-2025年中级注册安全工程师之安全生产技术基础题库综合试卷A卷附答案
- 2025年湖南省永州市蓝山县保安员招聘考试题库附答案解析
- 2025年虚拟社交平台的发展项目可行性研究报告及总结分析
- 2025年高端制造业市场扩展可行性研究报告及总结分析
- 预拌混凝土工程施工合同(3篇)
- 2025年私营医疗机构扩展项目可行性研究报告及总结分析
- 静脉用药集中调配培训
- 2025及未来5-10年高速插秧机项目投资价值市场数据分析报告
- 护患沟通培训课件
- 安全管理人员培训课件
- 企业财务制度规范范本合集
- 注塑件外观不良
- 2026年中国飞机MRO软件项目经营分析报告
- 跨境电商理论与实务PPT完整全套教学课件
- 八爪鱼救援装备系统演示文稿
- 2023年变革中国-市场经济的中国之路罗纳德哈里科斯
- DBJ-T 13-195-2022 烧结煤矸石实心砖和多孔砖(砌块) 应用技术标准
评论
0/150
提交评论