




已阅读5页,还剩13页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2018年江西省六校高三联考理科数学试题一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.设全集是实数集,函数的定义域为,则( )A. B. C. D. 【答案】D【解析】,所以,选D.2.复数的共轭复数记作,已知复数对应复平面上的点,复数满足,则( )A. B. C. D. 【答案】A【解析】【分析】由已知可得z11i,则,代入z22,变形后利用复数代数形式的乘除运算化简求得z2,则答案可求【详解】解:由已知可得z11i,则,又z22,|z2|故选:A【点睛】本题考查复数代数形式的乘除运算,考查复数模的求法,是基础题3.我国古代名著九章算术用“更相减损术”求两个正整数的最大公约数是一个伟大创举,这个伟大创举与我国古老的算法“辗转相除法”实质一样如图的程序框图源于“辗转相除法”,当输入,时,输出的( )A. 30 B. 6 C. 2 D. 8【答案】C【解析】执行循环得: ,结束循环,输出,选C.4.下列命题中: (1)“”是“”的充分不必要条件 (2)定义在 上的偶函数最小值为5; (3)命题“,都有”的否定是“,使得”(4)已知函数的定义域为,则函数的定义域为 正确命题的个数为( )A. 1个 B. 2个 C. 3个 D. 4个【答案】C【解析】(1) ,所以“”是“”的充分不必要条件;(2)为偶函数,所以,因为定义区间为,所以,因此最小值为5;(3) 命题“,都有”的否定是“,使得”;(4)由条件得;因此正确命题的个数为(1)(2)(4),选C.5.在内随机地取一个数,则事件“直线与圆有公共点”发生的概率为( )A. B. C. D. 【答案】A【解析】若直线与圆有公共点,则 因此概率为 ,选A6.一个四棱锥的三视图如图所示,则其体积为( )A. 11 B. 12 C. 13 D. 16【答案】D【解析】几何体如图,则体积为,选D.点睛:空间几何体体积问题的常见类型及解题策略(1)若所给定的几何体是可直接用公式求解的柱体、锥体或台体,则可直接利用公式进行求解(2)若所给定的几何体的体积不能直接利用公式得出,则常用转换法、分割法、补形法等方法进行求解(3)若以三视图的形式给出几何体,则应先根据三视图得到几何体的直观图,然后根据条件求解7.已知在各项为正数的等比数列中,与的等比中项为4,则当取最小值时首项等于( )A. 32 B. 16 C. 8 D. 4【答案】A【解析】设各项为正数的等比数列的公比为与的等比中项为4当且仅当,即时取等号,此时故选A8.设满足约束条件,若目标函数的取值范围恰好是 的一个单调递增区间,则的一个值为( )A. B. C. D. 【答案】D【解析】作出不等式组对应的平面区域如图:则z的几何意义为区域内的点D(2,0)的斜率,由图象知DB的斜率最小,DA的斜率最大,由 ,即A(1,2),则DA的斜率kDA=2,由 即B(1,2),则DB的斜率kDB=-2,则2z2,故的取值范围是2,2,故2,2是函数的一个单增区间,故 故得到答案为C。点睛:利用线性规划求最值的步骤:(1)在平面直角坐标系内作出可行域(2)考虑目标函数的几何意义,将目标函数进行变形常见的类型有截距型(型)、斜率型(型)和距离型(型)(3)确定最优解:根据目标函数的类型,并结合可行域确定最优解(4)求最值:将最优解代入目标函数即可求出最大值或最小值。注意解答本题时不要忽视斜率不存在的情形。9.若锐角满足,则函数的单调增区间为( )A. B. C. D. 【答案】B【解析】,又,解得由,得,函数的单调递减区间为选B10.已知抛物线C: ,过焦点F且斜率为 的直线与C相交于P、Q两点,且P、Q两点在准线上的投影分别为M、N两点,则SMFN=( )A. B. C. D. 【答案】B【解析】过焦点F且斜率为 的直线方程为,与联列方程组解得,从而,选B.11.已知函数,则函数 的零点个数为( )个A. 8 B. 7 C. 6 D. 5【答案】C【解析】作函数图像,有四个交点,分别为,根据函数图像知,方程对应解个数为0,1,3,2,因此零点个数为,选C.点睛:对于方程解的个数(或函数零点个数)问题,可利用函数的值域或最值,结合函数的单调性、草图确定其中参数范围从图象的最高点、最低点,分析函数的最值、极值;从图象的对称性,分析函数的奇偶性;从图象的走向趋势,分析函数的单调性、周期性等12.已知定义在上的函数,恒为正数的符合,则的取值范围为( )A. B. C. () D. 【答案】D【解析】令,则,所以,选D.点睛:利用导数解抽象函数不等式,实质是利用导数研究对应函数单调性,而对应函数需要构造. 构造辅助函数常根据导数法则进行:如构造,构造,构造,构造等二、填空题:本大题共4小题,每小题5分,共20分。13.已知,则的展开式中,常数项为_【答案】 【解析】 ,所以,所以,由得,因此常数项为.点睛:求二项展开式有关问题的常见类型及解题策略(1)求展开式中的特定项.可依据条件写出第项,再由特定项的特点求出值即可.(2)已知展开式的某项,求特定项的系数.可由某项得出参数项,再由通项写出第项,由特定项得出值,最后求出其参数.14.双曲线:的左、右焦点分别为、,过的直线交双曲线左支于、 两点,则的最小值为_【答案】9 【解析】 .15.如图,BC是单位圆A的一条直径,F是线段AB上的点,且,若DE是圆A中绕圆心A转动的一条直径,则的值是_【答案】【解析】 点睛:根据定义计算数量积的两种思路(1)若两个向量共起点,则两向量的夹角直接可得,根据定义即可求得数量积;若两向量的起点不同,需要通过平移使它们的起点重合,然后再计算(2)根据图形之间的关系,用长度和相互之间的夹角都已知的向量分别表示出要求数量积的两个向量,然后再根据平面向量数量积的定义和性质进行计算求解16.已知直三棱柱的侧棱长为6,且底面是边长为2的正三角形,用一平面截此棱柱,与侧棱,分别交于三点,若为直角三角形,则该直角三角形斜边长的最小值为_【答案】 【解析】建立空间直角坐标系,设 当且仅当时取等号.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。第1721题为必考题,每个试题考生都必须作答。第22、23题为选考题,考生根据要求作答。17.已知函数, .(1)求函数的最小正周期及其图象的对称轴方程;(2)在锐角中,内角A、B、C的对边分别为a、b、c,已知, ,求的面积.【答案】(1)最小正周期对称轴方程为 (2) 【解析】试题分析:(1)先根据二倍角公式、诱导公式以及配角公式化为基本三角函数,再根据正弦函数性质确定函数的最小正周期及其图象的对称轴方程;(2)先求A,再根据正弦定理将边角关系化为边的关系,最后根据三角形面积求面积.试题解析:解(1) f(x), 故其最小正周期, 令,解得,即函数图象的对称轴方程为,. (2)由(1),知,因为,所以.又,故得,解得. 由正弦定理及,得. 故. 18.随着人口老龄化的到来,我国的劳动力人口在不断减少,延迟退休已成为人们越来越关心的话题.为了了解公众对延迟退休的态度,某校课外研究性学习小组在某社区随机抽取50人进行调查,将调查结果整理后制成下表:年龄人数46753年龄人数67444经调查,年龄在,的被调查者中赞成延迟退休的人数分别为4和3,现从这两组的被调查者中各随机选取2人,进行跟踪调查. (1)求年龄在的被调查者中选取的2人都赞成延迟退休的概率;(2)若选中的4人中,两组中不赞成延迟退休的人数之差的绝对值为,求随机变量的分布列和数学期望.【答案】(1)(2)见解析【解析】试题分析: (1)利用古典概型的概率公式,求出年龄在25,30)的被调查者中选取的2人都是赞成的概率;(2)由已知得的可能取值为0,1,2,3,分别求出相应的概率,由此能求出随机变量的分布列和数学期望.试题解析:() 设“年龄在的被调查者中选取的人都是赞成”为事件,所以 ()的可能取值为,所以, , 所以点睛:求解离散型随机变量的数学期望的一般步骤为:第一步是判断取值,即判断随机变量的所有可能取值,以及取每个值所表示的意义;第二步是求概率,即利用排列组合,穷举法等求出随机变量每个值时的概率;第三步是写分布列,即按规范形式写出分布列,并注意用分布列的性质检验所求的分布列或某事件的概率是否正确;第四步是求期望值,一般利用离散型随机变量的数学期望的定义求期望的值,对于有些实际问题中的随机变量,如果能够断定它服从某常见的典型分布(如二项分布XB(n,p),则此随机变量的期望可直接利用这种典型分布的期望公式(E(X)np)求得.因此,应熟记常见的典型分布的期望公式,可加快解题速度.19.在如图所示的几何体中,四边形为平行四边形,平面,且是的中点.(1)求证:平面;(2)求二面角的余弦值的大小.【答案】(1)见解析(2)【解析】试题分析:(1)取AD的中点N,连接MN、NF由三角形中位线定理,结合已知条件,证出四边形MNFE为平行四边形,从而得到EMFN,结合线面平行的判定定理,证出EM平面ADF;(2)求出平面ADF、平面BDF的一个法向量,利用向量的夹角公式,可求二面角的大小.解析:(1)解法一:取的中点,连接.在中,是的中点,是的中点,所以,又因为,所以且.所以四边形为平行四边形,所以,又因为平面平面,故平面.解法二:因为平面,故以为原点,建立如图所示的空间直角坐标系.由已知可得,设平面的一个法向量是.由得令,则.又因为,所以,又平面,故平面.(2)由(1)可知平面的一个法向量是.易得平面的一个法向量是所以,又二面角为锐角,故二面角的余弦值大小为.20.已知椭圆C:的离心率与双曲线的离心率互为倒数,且过点(1)求椭圆C的方程;(2)过作两条直线与圆相切且分别交椭圆于M、N两点 求证:直线MN的斜率为定值; 求MON面积的最大值(其中O为坐标原点)【答案】(1)(2) 【解析】试题分析:(1)先求双曲线离心率得椭圆离心率,再将点坐标代入椭圆方程,解方程组得,(2)先根据点斜式得直线方程,再与椭圆方程联立解得坐标,根据直线与圆相切,得斜率相反,同理可得最后根据斜率公式求斜率,设直线MN方程,根据原点到直线距离得高,与椭圆方程联立方程组结合韦达定理以及弦长公式得底边边长,最后代入三角形面积公式,利用基本不等式求最值.试题解析:(1)可得,设椭圆的半焦距为,所以, 因为C过点,所以,又,解得, 所以椭圆方程为(2) 显然两直线的斜率存在,设为,由于直线与圆相切,则有, 直线的方程为, 联立方程组消去,得,因为为直线与椭圆的交点,所以,同理,当与椭圆相交时,所以,而,所以直线的斜率 设直线的方程为,联立方程组消去得,所以, 原点到直线的距离,面积为,当且仅当时取得等号经检验,存在(),使得过点的两条直线与圆相切,且与椭圆有两个交点M,N所以面积的最大值为点睛:解析几何中的最值是高考的热点,在圆锥曲线的综合问题中经常出现,求解此类问题的一般思路为在深刻认识运动变化的过程之中,抓住函数关系,将目标量表示为一个(或者多个)变量的函数,然后借助于函数最值的探求来使问题得以解决.21.已知函数,(1)若曲线在处的切线与直线垂直,求实数的值;(2)设,若对任意两个不等的正数,都有恒成立,求实数的取值范围;(3)若上存在一点,使得成立,求实数的取值范围【答案】(1);(2);(3).【解析】试题分析:(1)先根据导数几何意义得,解得实数的值;(2)设,构造函数,则转化为在上为增函数,即得在上恒成立,参变分离得,最后根据二次函数最值求实数的取值范围;(3)先化简不等式,并构造函数,求导数,按导函数零点与定义区间大小关系讨论函数单调性,根据单调性确定函数最小值,根据最小值小于零解得实数的取值范围.试题解析:解:(1)由,得. 由题意,所以.(2).因为对任意两个不等的正数,都有恒成立,设,则即恒成立. 问题等价于函数,即在上为增函数,所以在上恒成立.即在上恒成立.所以,即实数的取值范围是.(3)不等式等价于,整理得.构造函数,由题意知,在上存在一点,使得.因为,所以,令,得.当,即时,在上单调递增.只需,解得.当即时,在处取最小值.令即,可得.令,即,不等式可化为.因为,所以不等式左端大于1,右端小于等于1,所以不等式不能成立.当,即时,在上单调递减,只需,解得.综上所述,实数的取值范围是.请考生在第22、23题中任选一题作答。如果多做,则按所做的第一题计分。做答时,用2B铅笔在答题卡上把所选题目对应的题号涂黑22.选修44:坐标系与参数方程在直角坐标系中,直线的参数方程为(其中t为参数),在以原点O为极点,以轴为极轴的极坐标系中,曲线C的极坐标方程为(1)求直线的普通方程及曲线的直角坐标方程;(2)设是曲线上的一动点,的中点为,求点到直线的最小值【答案】(1),(2)【解析】试题分析:(1)根据加减消元法将直线的参数方程化为普通方程,根据将曲线C的极坐标方程化为直角坐标方程;(2)先根据转移法求点的轨迹,再根据直线与圆位置关系求最小值试题解析:(1)由得的普通方程 又由,得,所以,曲线的直角坐标方程为,即 (2)设,则,由于P是的中点,则,所以,得
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 黄山租赁仓库合同范本
- 玻璃幕安装合同范本
- 商业房屋出售合同范本
- cfr的运输合同范本
- 盐城市领导干部任前廉政知识考试题库及答案
- 营销管理合同范本
- 人口老龄化与老年残疾人保障体系的构建
- 漫画产业发展现状与文化影响分析
- 2025年八年级英语下册期末试卷及答案
- 2025年山西省阳泉市事业单位工勤技能考试题库(含答案)
- GB/T 1192-1999农业轮胎
- 人类学-课件精
- DBJ51-T 188-2022 预拌流态固化土工程应用技术标准
- 体育产业经营管理课件第一章导论
- 临床医学晕厥课件
- 2023门球竞赛规则电子版图文并茂
- 部编版四年级语文上册第5课《一个豆荚里的五粒豆》优秀PPT课件
- 大班社会《班级规则我遵守》课件
- 能源概论__第一章能源概述PPT课件
- 小学一年级体育下册教案全册
- PTB220串行数字气压计用户手册
评论
0/150
提交评论