




已阅读5页,还剩7页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
第九讲内容一、平面一般力系平衡方程的其他形式前面我们通过平面一般力系的平衡条件导出了平面一般力系平衡方程的基本形式,除了这种形式外,还可将平衡方程表示为二力矩形式及三力矩形式。1二力矩形式的平衡方程在力系作用面内任取两点A、B及X轴,如图413所示,可以证明平面一般力系的平衡方程可改写成两个力矩方程和一个投影方程的形式,即 (46)式中X轴不与A、B两点的连线垂直。证明:首先将平面一般力系向A点简化,一般可得到过A点的一个力和一个力偶。若成立,则力系只能简化为通过A点的合力R或成平衡状态。如果又成立,说明R必通过B。可见合力R的作用线必为AB连线。又因成立,则,即合力R在X轴上的投影为零,因AB连线不垂直X轴,合力R亦不垂直于X轴,由可推得。可见满足方程(46)的平面一般力系,若将其向A点简化,其主矩和主矢都等于零,从而力系必为平衡力系。2三力矩形式的平衡方程在力系作用面内任意取三个不在一直线上的点A、B、C,如图414所示,则力系的平衡方程可写为三个力矩方程形式,即 (47)式中,A、B、C三点不在同一直线上。同上面讨论一样,若和成立,则力系合成结果只能是通过A、B两点的一个力(图414)或者平衡。如果也成立,则合力必然通过C点,而一个力不可能同时通过不在一直线上的三点,除非合力为零,才能成立。因此,力系必然是平衡力系。综上所述,平面一般力系共有三种不同形式的平衡方程,即式(45)、式(46)、式(47),在解题时可以根据具体情况选取某一种形式。无论采用哪种形式,都只能写出三个独立的平衡方程,求解三个未知数。任何第四个方程都不是独立的,但可以利用这个方程来校核计算的结果。【例47】 某屋架如图415(a)所示,设左屋架及盖瓦共重,右屋架受到风力及荷载作用,其合力,与BC夹角为,试求A、B支座的反力。【解】 取整个屋架为研究对象,画其受力图,并选取坐标轴X轴和Y轴,如图415(b)所示,列出三个平衡方程 校核说明计算无误。【例48】 梁AC用三根支座链杆连接,受一力作用,如图416(a)所示。不计梁及链杆的自重,试求每根支座链杆的反力。【解】 取AC梁为研究对象,画其受力图,如图416(b)所示。列平衡方程时,为避免解联立方程组,最好所列的方程中只有一个未知力,因此,取和的交点O为矩心列平衡方程取与的交点O2为矩心列平衡方程取校核 说明计算无误。3平面力系的特殊情况平面一般力系是平面力系的一般情况。除前面讲的平面汇交力系,平面力偶系外,还有平面平行力系都可以看为平面一般力系的特殊情况,它们的平衡方程都可以从平面一般力系的平衡方程得到,现讨论如下。(1)平面汇交力系对于平面汇交力系,可取力系的汇交点作为坐标的原点,图417(a)所示,因各力的作用线均通过坐标原点O,各力对O点的矩必为零,即恒有。因此,只剩下两个投影方程即为平面汇交力系的平衡方程。(2)平面力偶系平面力偶系如图417(b)所示,因构成力偶的两个力在任何轴上的投影必为零,则恒有和,只剩下第三个力矩方程,但因为力偶对某点的矩等于力偶矩,则力矩方程可改写为即平面力偶系的平衡方程。(3)平面平行力系平面平行力系是指其各力作用线在同一平面上并相互平行的力系,如图417()所示,选OY轴与力系中的各力平行,则各力在X轴上的投影恒为零,则平衡方程只剩下两个独立的方程 (48)若采用二力矩式(46),可得 (49)式中A、B两点的连线不与各力作用线平行。平面平行力系只有两个独立的平衡方程,只能求解两个未知量。【例49】 图418所示为塔式起重机。已知轨距,机身重,其作用线到右轨的距离,起重机平衡重,其作用线到左轨的距离,荷载P的作用线到右轨的距离,(1)试证明空载时(时)起重机时否会向左倾倒?(2)求出起重机不向右倾倒的最大荷载P。【解】 以起重机为研究对象,作用于起重机上的力有主动力G、P、Q及约束力和,它们组成一个平行力系(图418)。(1) 使起重机不向左倒的条件是,当空载时,取,列平衡方程所以起重机不会向左倾倒(2) 使起重机不向右倾倒的条件是,列平衡方程欲使,则需当荷载时,起重机是稳定的。二、物体系统的平衡前面研究了平面力系单个物体的平衡问题。但是在工程结构中往往是由若干个物体通过一定的约束来组成一个系统。这种系统称为物体系统。例如,图示419(a)所示的组合梁,就是由梁AC和梁CD通过铰C连接,并支承在A、B、D支座而组成的一个物体系统。在一个物体系统中,一个物体的受力与其他物体是紧密相关的;整体受力又与局部紧密相关的。物体系统的平衡是指组成系统的每一个物体及系统的整体都处于平衡状态。在研究物体系统的平衡问题时,不仅要知道外界物体对这个系统的作用力,同时还应分析系统内部物体之间的相互作用力。通常将系统以外的物体对这个系统的作用力称为外力,系统内各物体之间的相互作用力称为内力。例如图419(b)的组合梁的受力图,荷载及A、B、D支座的反力就是外力,而在铰C处左右两段梁之间的互相作用的力就是内力。应当注意,外力和内力是相对的概念,是对一定的考察对象而言的,例如图419组合梁在铰C处两段梁的相互作用力,对组合梁的整体来说,就是内力,而对左段梁或右段梁来说,就成为外力了。当物体系统平衡时,组成该系统的每个物体都处于平衡状态,因而,对于每一个物体一般可写出三个独立的平衡方程。如果该物体系统有个物体,而每个物体又都在平面一般力系作用下,则就有个独立的平衡方程,可以求出个未知量。但是,如果系统中的物体受平面汇交力系或平面平行力系的作用,则独立的平衡方程将相应减少,而所能求的未知量数目也相应减少。当整个系统中未知量的数目不超过独立的平衡方程数目,则未知量可由平衡方程全部求出,这样的问题称为静定问题。当未知量的数目超过了独立平衡方程数目,则未知量由平衡方程就不能全部求出,这样的问题,则称为超静定问题,在静力学中,我们不考虑超静定问题。在解答物体系统的平衡问题时,可以选取整个物体系统作为研究对象,也可以选取物体系统中某部分物体(一个物体或几个物体组合)作为研究对象,以建立平衡方程。由于物体系统的未知量较多,应尽量避免从总体的联立方程组中解出,通常可选取整个系统为研究对象,看能否从中解出一或两个未知量,然后再分析每个物体的受力情况,判断选取哪个物体为研究对象,使之建立的平衡方程中包含的未知量少,以简化计算。下面举例说明求解物体系统平衡问题的方法。【例410】 组合梁受荷载如图420(a)所示。已知,梁自重不计,求支座A、C的反力。【解】 组合梁由两段梁AB和BC组成,作用于每一个物体的力系都是平面一般力系,共有6个独立的平衡方程;而约束力的未知数也是6(A处有三个,B处有两个,C处有1个)。首先取整个梁为研究对象,受力图如图420(b)所示。其余三个未知数、和,无论怎样选取投影轴和矩心,都无法求出其中任何一个,因此,必须将AB梁和BC梁分开考虑,现取BC梁为研究对象,受力图如图420(c)所示。再回到受图420(b) 校核:对整个组合梁,列出可见计算无误。【例411】 钢筋混凝土三铰刚架受荷载如图421(a)所示,已知,求支座A、B和铰C的约束反力。【解】 三铰刚架由左右两半刚架组成,受到平面一般力系的作用,可以列出六个独立的平衡方程。分析整个三铰刚架和左、右两半刚架的受力,画出受力图,如图(b)、(c)、(d)所示,可见,系统的未知量总计为六个,可用六个平衡方程求解出六个未知量。(1)取整个三铰刚架为研究对象,受力图如图421(b)所示 (2)取左半刚架为研究对象,受力图如图421(c)所示将值代入(a),可得校核:考虑右半刚架的平衡,受力图如图421(d)所示可见计算无误。【412】 图422(a)所示,在支架上悬挂着重的重物,B、E、D为铰接,A为固定端支座,滑轮直径为300mm,轴承C是光滑的,其余尺寸如图示。各杆和滑轮、绳子重量不计,求A、B、C、D、E各处的反力。【解】:本结构中,DE为二力杆,因此D、E处铰链反力有1个未知量;A为固定端支座有3个未知的约束反力;B、C处铰链反力各有2个未知量;滑轮两边的绳子拉力各有1个未知量;共10个未知量。考虑到AB、BC和滑轮三个构件处于平衡,其可写9个平衡方程;再加上重物在二力作用下处于平衡,可有
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 重难点解析吉林省图们市七年级上册有理数及其运算专项测评试卷(含答案详解)
- 中级银行从业资格之中级银行业法律法规与综合能力能力提升试题打印完整参考答案详解
- 电竞公司售后管理服务制度
- 环保公司信息系统建设规章
- 自考专业(计算机网络)试题含答案详解【典型题】
- 能源行业能源互联网与分布式能源管理平台方案
- 重难点解析鲁教版(五四制)7年级数学下册期末试卷【A卷】附答案详解
- 电竞公司安全管理办法
- 金融风险控制作业指导书
- 环保公司设备报废管理细则
- 胖东来服务管理手册
- 猪配种工作总结
- 20230301-ECC200边缘网络控制器
- THBSF 003-2023 红椿大径级无节材培育技术规程
- ISO27001:2022信息安全管理手册+全套程序文件+表单
- 一小时漫画缠论实战法
- 幼儿园教职工保密协议内容
- 校园安全工作专题培训会
- 《大数据基础》 课件 项目一 走进大数据
- 临床医学内科学-消化系统疾病-肠结核和结核性腹膜炎
- 营区物业服务投标方案(技术标)
评论
0/150
提交评论