高中棱台棱锥OK.doc_第1页
高中棱台棱锥OK.doc_第2页
高中棱台棱锥OK.doc_第3页
高中棱台棱锥OK.doc_第4页
高中棱台棱锥OK.doc_第5页
已阅读5页,还剩14页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

三. 棱锥及相关概念 1定义:有一个面是多边形,而其余各面都是有一个公共顶点的三角形,由这些面围 成的几何体叫做棱锥2相关概念:(1)棱锥中有公共顶点的各三角形叫做棱锥的侧面,如侧面 SAB、SAE 等;(2)各侧面的公共顶点叫做棱锥的顶点,如顶点S、A、B、C 等;(3)相邻两侧面的公共边叫做棱锥的侧棱,如侧棱SA、SB等;(4)棱锥中的多边形叫做棱锥的底面,如底面ABC、ABCDE等;(5)如果棱锥的底面水平放置,则顶点与过顶点的铅垂线与底面的交点之间的线段或距离,叫做棱锥的高,3. 如何理解棱锥?(1) 棱锥是多面体中的重要一种,它有两个本质的特征:有一个面是多边形;其余各面是有一个公共顶点的三角形,二者缺一不可。(2)棱锥有一个面是多边形,其余各面都是三角形,是棱锥?4棱锥的分类:(1)按底面多边形的边数分为三棱锥、四棱锥、五棱锥等,其中三棱锥又叫四面体!三棱锥 四棱锥 五棱锥(四面体)(2)正棱锥:如果棱锥的底面是正多边形,并且水平放置, 它的顶点又在过正多边形中心的铅垂线上,则这个棱锥叫做正棱锥!5正棱锥的性质:(1)正棱锥的各侧面都是全等的等腰三角形;(2)等腰三角形底边上的高都相等,叫做棱锥的斜高!6棱锥的表示:(1)用顶点和底面各顶点的字母表示棱锥:如三棱锥PABC,四棱锥SABCD.(2)用对角面表示:如四棱锥可以用PAC表示.四棱台及相关概念1定义:棱锥被平行于底面的平面所截,截面和底面间的部分叫做棱台.2相关概念:(1)棱台的下底面、上底面:原棱锥的底面和截面分别叫做棱台的下底面、上底面;(2)棱台的侧面:棱台中除上、下底面以外的面叫做棱台的侧面;(3)棱台的侧棱:相邻两侧面的公共边叫做棱台的侧棱;(4)棱台的高:当棱台的底面水平放置时,铅垂线与两底面交点间的线段或距离叫做棱台的高。3棱台的分类:(1)按底面多边形的边数分为三棱台、四棱台、五棱台等;(2)正棱台:由正棱锥截得的棱台叫做正棱台。正四棱台4正棱台的性质:(1)各侧棱相等;(2)正棱台的各侧面都是全等的等腰梯形;(3)正棱台的斜高相等。5棱台的表示:棱台可用表示上、下底面的字母来命名,如可以记 作 棱 台ABCDABCD,或 记 作 棱 台AC. 棱柱、棱锥、棱台之间的关系 棱锥是当棱柱的一个底面收缩为一个点时形成的空间图形, 棱台则可以看成是用 一个平行于棱锥底面的平面截棱锥所得到的图形, 要注意的是棱台的各条侧棱延长后,将会交于一点,即棱台可以还原成棱锥.【知识要点】1简单空间几何体的基本概念:(1)(2)特殊的四棱柱:(3)其他空间几何体的基本概念:几何体基本概念正棱锥底面是正多面形,并且顶点在底面的射影是底面的中心正棱台正棱锥被平行于底面的平面所截,截面与底面间的几何体是正棱台圆柱以矩形的一边所在的直线为轴,将矩形旋转一周形成的曲面围成的几何体圆锥以直角三角形的一边所在的直线为轴,将直角三角形旋转一周形成的曲面围成的几何体圆台以直角梯形中垂直于底边的腰所在的直线为轴,将直角梯形旋转一周形成的曲面围成的几何体球面半圆以它的直径为轴旋转,旋转而成的曲面球球面所围成的几何体2简单空间几何体的基本性质:几何体性质补充说明棱柱(1)侧棱都相等,侧面是平行四边形(2)两个底面与平行于底面的截面是全等的多边形(3)过不相邻的两条侧棱的截面(对角面)是平行四边形(1)直棱柱的侧棱长与高相等,侧面及对角面都是矩形(2)长方体一条对角线的平方等于一个顶点上三条棱长的平方和正棱锥(1)侧棱都相等,侧面是全等的等腰三角形(2)棱锥的高、斜高和斜高在底面上的射影组成一个直角三角形;棱锥的高、侧棱和侧棱在底面上的射影也组成一个直角三角形球(1)球心和球的截面圆心的连线垂直于截面(2)球心到截面的距离d,球的半径R,截面圆的半径r满足(1)过球心的截面叫球的大圆,不过球心的截面叫球的小圆(2)在球面上,两点之间的最短距离,就是经过这两点的大圆在这两点间的一段劣弧的长度(两点的球面距离)3简单几何体的三视图与直观图:(1)平行投影:概念:如图,已知图形F,直线l与平面a 相交,过F上任意一点M作直线MM1平行于l,交平面a 于点M1,则点M1叫做点M在平面a 内关于直线l的平行投影如果图形F上的所有点在平面a 内关于直线l的平行投影构成图形F1,则F1叫图形F在a 内关于直线l的平行投影平面a 叫投射面,直线l叫投射线平行投影的性质:性质1直线或线段的平行投影仍是直线或线段;性质2平行直线的平行投影是平行或重合的直线;性质3平行于投射面的线段,它的投影与这条线段平行且等长;性质4与投射面平行的平面图形,它的投影与这个图形全等;性质5在同一直线或平行直线上,两条线段平行投影的比等于这两条线段的比(2)直观图:斜二侧画法画简单空间图形的直观图(3)三视图:正投影:在平行投影中,如果投射线与投射面垂直,这样的平行投影叫做正投影三视图:选取三个两两垂直的平面作为投射面若投射面水平放置,叫做水平投射面,投射到这个平面内的图形叫做俯视图;若投射面放置在正前方,叫做直立投射面,投射到这个平面内的图形叫做主视图;和直立、水平两个投射面都垂直的投射面叫做侧立投射面,投射到这个平面内的图形叫做左视图将空间图形向这三个平面做正投影,然后把三个投影按右图所示的布局放在一个水平面内,这样构成的图形叫空间图形的三视图画三视图的基本原则是“主左一样高,主俯一样长,俯左一样宽”4简单几何体的表面积与体积:(1)柱体、锥体、台体和球的表面积:S直棱柱侧面积ch,其中c为底面多边形的周长,h为直棱柱的高,其中c为底面多边形的周长,h为正棱锥的斜高,其中c,c分别是棱台的上、下底面周长,h为正棱台的斜高S圆柱侧面积2pRh,其中R是圆柱的底面半径,h是圆柱的高S圆锥侧面积pRl,其中R是圆锥的底面半径,l是圆锥的母线长S球4pR2,其中R是球的半径(2)柱体、锥体、台体和球的体积:V柱体Sh,其中S是柱体的底面积,h是柱体的高,其中S是锥体的底面积,h是锥体的高,其中S,S分别是台体的上、下底面的面积,h为台体的高,其中R是球的半径2、正n(n3,4,6)边形中的相关数据: 正三角形正方形正六边形边长aaa对角线长长:2a;短:边心距面积a2外接圆半径a一、选择题1有一个几何体的三视图如下图所示,这个几何体可能是一个( ) 主视图 左视图 俯视图 (第1题)A棱台B棱锥C棱柱D正八面体2如果一个水平放置的平面图形的斜二测直观图是一个底角为45,腰和上底均为的等腰梯形,那么原平面图形的面积是( )A2BCD3棱长都是的三棱锥的表面积为( )AB2C3D44长方体的一个顶点上三条棱长分别是3,4,5,且它的8个顶点都在同一球面上,则这个球的表面积是( )A25B50C125D都不对5正方体的棱长和外接球的半径之比为()A1B2C2D36在ABC中,AB2,BC1.5,ABC120,若使ABC绕直线旋转一周,则所形成的几何体的体积是( )ABCD7若底面是菱形的棱柱其侧棱垂直于底面,且侧棱长为5,它的对角线的长分别是9和15,则这个棱柱的侧面积是( )A130B140C150D160 1A解析:从俯视图来看,上、下底面都是正方形,但是大小不一样,可以判断可能是棱台2A解析:原图形为一直角梯形,其面积S(11)223A解析:因为四个面是全等的正三角形,则S表面44B解析:长方体的对角线是球的直径,l5,2R5,R,S4R2505C解析:正方体的对角线是外接球的直径6D解析:VV大V小r2(11.51)7D解析:设底面边长是a,底面的两条对角线分别为l1,l2,而15252,9252,而4a2,即1525292524a2,a8,S侧面4851608D解析:过点E,F作底面的垂面,得两个体积相等的四棱锥和一个三棱柱,V232329B解析:斜二测画法的规则中,已知图形中平行于 x 轴的线段,在直观图中保持原长度不变;平行于 y 轴的线段,长度为原来的一半平行于 z 轴的线段的平行性和长度都不变10D解析:从三视图看底面为圆,且为组合体,所以选D. 2、如图中甲、乙、丙所示,下面是三个几何体的三视图,相应的标号是( ) 长方体 圆锥 三棱锥 圆柱A B C D 。正视图侧视图俯视图 正视图 侧视图 俯视图 正视图 侧视图 俯视图 甲 乙 丙3、如果一个几何体的正视图和侧视图都是长方形,则这个几何体可能是( )A 长方体或圆柱 B 正方体或圆柱C 长方体或圆台 D 正方体或四棱锥 5、若一个三角形,采用斜二测画法作出其直观图,其直观图面积是原三角形面积的( )A 倍 B 倍 C 2倍 D 倍 1、一个圆柱的侧面展开图是一个正方形,这个圆柱的全面积与侧面积的比是( )A B C D 2、已知圆锥的母线长为8,底面圆周长为,则它的体积是( ) A B 9 C D 3、若圆台的上下底面半径分别是1和3,它的侧面积是两底面面积的2倍,则圆台的母线长是( )A 2 B 2.5 C 5 D 104、若圆锥的侧面展开图是圆心角为1200,半径为的扇形,则这个圆锥的表面积与侧面积的比是( )A 3:2 B 2:1 CABDPA1B1C1D1C 4:3 D 5:35、如图,在棱长为4的正方体ABCD-A1B1C1D1中,P是A1B1上一点,且PB1A1B1,则多面体P-BCC1B1的体积为( )A B C 4 D 16 6、两个平行于圆锥底面的平面将圆锥的高分成相等的三部分,则圆锥被分成的三部分的体积的比是( )A 1:2:3 B 1:7:19 C 3:4:5 D 1:9:27 ()1、若三球的表面积之比为1:2:3,则其体积之比为( )A B C D 2、已知长方体一个顶点上三条棱分别是3、4、5,且它的顶点都在同一个球面上,则这个球的表面积是( )A B C D 3、木星的体积约是地球体积的倍,则它的表面积约是地球表面积的( )A倍 B倍C倍 D倍、一个四面体的所有棱长为,四个顶点在同一球面上,则此球的表面积为()A BC D6、半球内有一内接正方体,则这个半球的表面积与正方体的表面积的比为()A BC D以上答案都不对 2、中心角为1350,面积为B的扇形围成一个圆锥,若圆锥的全面积为A,则A:B等于()A 11:8 B 3:8 C 8:4 D 13:83、设正方体的表面积为24,一个球内切于该正方体,则这个球的体积为( )A B C D 4、若干毫升水倒入底面半径为的圆柱形器皿中,量得水面高度为,若将这些水倒入轴截面是正三角形的倒圆锥形器皿中,且恰好装满,则水面高度是( )A B C D 6、已知正方体外接球的体积是,则正方体的棱长为( )A B C D 5.关于直观图画法的说法中,不正确的是A.原图中平行于轴的线段,其对应线段仍平行于轴,且其长度不变 B.原图中平行于轴的线段,其对应线段仍平行于轴,且其长度不变 C.画与对应的坐标系时,可等于 D.作直观图时,由于选轴不同,所画直观图可能不同。6.利用斜二测画法可以得到:三角形的直观图是三角形;平行四边形的直观图是平行四边形;矩形的直观图是矩形;.菱形的直观图是菱形。以上结论正确的是A. B. C. D 8. 一个长方体共一个顶点的三个面的面积分别为则这个长方体的对角线长为 A B. C.6 D. 12.对于一个底边在轴上的三角形,采用斜二测画法作出其直观图,其直观图面积是原三角形面积的A.2倍 B.倍 C.倍 D.倍题号123456789101112答案DADCBADDCDDB1将棱长为2的正方体木块削成一个体积最大的球,则这个球的表面积为( )(A)2p(B)4p(C)8p(D)16p2如图是一个几何体的三视图,根据图中数据,可得该几何体的表面积是( )(A)9p(B)10p(C)11p(D)12p 二、填空题二、填空题:请把答案填在题中横线上(每小题5分,共20分).13.已知一个圆锥,过高的中点且平行于底面的截面的面积是4,则其底面半径是.14.半径为的球被两个平行平面所截,两个截面圆的面积分别是、,则这两个平行平面间的距离是2cm或14cm.15.一个水平放置的平面图形的斜二测直观图是一个底角为,腰和上底均为1的等腰梯形,则这个平面图形的面积等于.16.已知正三棱柱的底面边长为1,高为8,一质点自点出发,沿着三棱柱的侧面绕行两周到达点的最短路线的长为. 10. 9.在三棱锥SABC中,SASBSC1,ASBASCBSC30,如图,一只蚂蚁从点A出发沿三棱锥的表面爬行一周后又回到A点,则蚂蚁爬过的最短路程为_ 8 9、 10B 11 8、半径为15,圆心角为2160的扇形围成圆锥的侧面,则圆锥的高是 10、棱长为,各面均为等边三角形的四面体(正四面体)的表面积为体积为12若三个球的表面积之比是123,则它们的体积之比是_13正方体ABCDA1B1C1D1 中,O是上底面ABCD的中心,若正方体的棱长为a,则三棱锥OAB1D1的体积为_ 15已知一个长方体共一顶点的三个面的面积分别是、,则这个长方体的对角线长是_,它的体积为_16一个直径为32厘米的圆柱形水桶中放入一个铁球,球全部没入水中后,水面升高9厘米则此球的半径为_厘米11参考答案:5,4,3解析:符合条件的几何体分别是:三棱柱,三棱锥,三棱台12参考答案:123r1r2r31,13()3()312313参考答案:解析:画出正方体,平面AB1D1与对角线A1C的交点是对角线的三等分点,三棱锥OAB1D1的高ha,VSh2a2aa3另法:三棱锥OAB1D1也可以看成三棱锥AOB1D1,它的高为AO,等腰三角形OB1D1为底面14参考答案:平行四边形或线段15参考答案:,解析:设ab,bc,ac,则V = abc,c,a,b1,l16参考答案:12解析:VShr2hR3,R125如图,正三棱柱ABCA1B1C1的每条棱长均为2,E、F分别是BC、A1C1的中点,则EF的长等于_6将边长为1的正方形ABCD沿对角线AC折起,使得BD1,则三棱锥DABC的体积是_7一个六棱柱的底面是正六边形,其侧棱垂直底面已知该六棱柱的顶点都在同一个球面上,且该六棱柱的高为,底面周长为3,则这个球的体积为_ 6一个棱锥被平行于底面的平面所截,若截面面积与底面面积之比为49,则此棱锥的侧棱被分成上下两部分之比为_.7若一个圆锥的轴截面是等边三角形,其面积为,则这个圆锥的母线长为_. 814下图都是正方体的表面展开图,还原成正方体后,其中两个完全一样的是_. (1) (2) (3) (4)9已知集合A=正方体,B=长方体,C=正四棱柱,D=直四棱柱,E=棱柱,F=直平行六面体,则这几个集合的关系是_.11、长方体ABCDA1B1C1D1中,AB3,BC2,BB11,由A到C1在长方体表面上的最短距离为多少?AA1B1BCC1D1D 11、如图,一个圆锥形的空杯子上面放着一个半球形的冰淇淋,如果冰淇淋化了,会溢出杯子吗?(半球半径等于圆锥底面半径) 12、有三个球和一个边长为的正方体,第一个球内切于正方体,第二个球与这个正方体各条棱相切,第三个球过这个正方体的各个顶点,求这三个球的表面积之比。2 11、一个三棱柱的三视图如图所示,试求此三棱柱的表面积和体积。ABCDA11B11C11D1112、如图,在长方体ABCD-A1B1C1D1中,用截面截下一个棱锥C-A1DD1,求棱锥C-A1DD1的体积与剩余部分的体积比。 13.一个圆锥截成圆台,已知圆台的上下底面半径的比是14,母线长为10cm,求圆锥的母线长_ 12略 13cm例1.有四个命题: 各侧面是全等的等腰三角形的四棱锥是正四棱锥; 底面是正多边形的棱锥是正棱锥; 棱锥的所有侧面可能都是直角三角形; 四棱锥的四个侧面中可能四个都是直角三角形。其中正确的命题有 . 例2. 已知正四棱锥VABCD,底面面积为16,一条侧棱长为2 ,计算它的高和斜高。 2若正棱锥的底面边长与侧棱长相等,则该棱锥一定不是( ) (A)三棱锥 (B)四棱锥 (C)五棱锥 (D)六棱锥D 3过正方体三个顶点的截面截得一个正三棱锥,若正方体棱长为 a,则截得的正三棱锥的高为 。4正四面体棱长为 a,M,N为其两条相对棱的中点,则MN的长是 。 10如图,在圆锥SO中,其母线长为2,底面半径为,一只虫子从底面圆周上一点A出发沿圆锥表面爬行一周后又回到A点,则这只虫子所爬过的最短路程是多少? 例1 如图,正三棱锥PABC的底面边长为a,侧棱长为b ()证明:PABC;()求三棱锥PABC的表面积;()求三棱锥PABC的体积【分析】对于()只要证明BC(PA)垂直于经过PA(BC)的平面即可;对于()则要根据正三棱锥的基本性质进行求解证明:()取BC中点D,连接AD,PDPABC是正三棱锥,ABC是正三角形,三个侧面PAB,PBC,PAC是全等的等腰三角形D是BC的中点,BCAD,且BCPD,BC平面PAD,PABC()解:在RtPBD中,三个侧面PAB,PBC,PAC是全等的等腰三角形,三棱锥PABC的侧面积是ABC是边长为a的正三角形,三棱锥PABC的底面积是三棱锥PABC的表面积为()解:过点P作PO平面ABC于点O,则点O是正ABC的中心,在RtPOD中,三棱锥PABC的体积为【评述】1、解决此问题要求同学们熟悉正棱锥中的几个直角三角形,如本题中的RtPOD,其中含有棱锥的高PO;如RtPBD,其中含有侧面三角形的高PD,即正棱锥的斜高;如果连接OC,则在RtPOC中含有侧棱熟练运用这几个直角三角形,对解决正棱锥的有关问题很有帮助例2 如图,正三棱柱ABCA1B1C1中,E是AC的中点()求证:平面BEC1平面ACC1A1;()求证:AB1平面BEC1【分析】本题给出的三棱柱不是直立形式的直观图,这种情况下对空间想象能力提出了更高的要求,可以根据几何体自身的性质,适当添加辅助线帮助思考证明:()ABCA1B1C1是正三棱柱,AA1平面ABC,BEAA1ABC是正三角形,E是AC的中点,BEAC,BE平面ACC1A1,又BE平面BEC1,平面BEC1平面ACC1A1()证明:连接B1C,设BC1B1CDBCC1B1是矩形,D是B1C的中点, DEAB1又DE平面BEC1,AB1平面BEC1,AB1平面BEC1例3 在四棱锥PABCD中,平面PAD平面ABCD,ABDC,PAD是等边三角形,已知BD2AD8, ()设M是PC上的一点,证明:平面MBD平面PAD;()求四棱锥PABCD的体积【分析】本题中的数量关系较多,可考虑从“算”的角度入手分析,如从M是PC上的动点分析知,MB,MD随点M的变动而运动,因此可考虑平面MBD内“不动”的直线BD是否垂直平面PAD证明:()在ABD中,由于AD4,BD8,所以AD2BD2AB2故ADBD又平面PAD平面ABCD,平面PAD平面ABCDAD,BD平面ABCD,所以BD平面PAD,又BD平面MBD,故平面MBD平面PAD()解:过P作POAD交AD于O,由于平面PAD平面ABCD,所以PO平面ABCD因此PO为四棱锥PABCD的高,又PAD是边长为4的等边三角形因此在底面四边形ABCD中,ABDC,AB2DC,所以四边形ABCD是梯形,在RtADB中,斜边AB边上的高为,即为梯形ABCD的高,所以四边形ABCD的面积为故例4 如下的三个图中,上面的是一个

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论