



全文预览已结束
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
3 / 4专题秒杀秘笈行测数量关系春来我不先开口 那个虫儿敢作声?十年磨一剑,今朝把示君这是一套结晶汗水的秘笈;铁肩担道义,妙手著文章这是一套背负责任的秘笈;吟安一个字,捻断数茎须这是一套皓首穷经的秘笈;大漠孤烟直,长河落日圆这是一套厚重深沉的秘笈;第十一式抽屉原理和六人集会问题“任意367个人中,必有生日相同的人。”“从任意5双手套中任取6只,其中至少有2只恰为一双手套。”“从数1,2,.,10中任取6个数,其中至少有2个数为奇偶性不同。” . .大家都会认为上面所述结论是正确的。这些结论是依据什么原理得出的呢?这个原理叫做抽屉原理。它的内容可以用形象的语言表述为:“把m个东西任意分放进n个空抽屉里(mn),那么一定有一个抽屉中放进了至少2个东西。”在上面的第一个结论中,由于一年最多有366天,因此在367人中至少有2人出生在同月同日。这相当于把367个东西放入 366个抽屉,至少有 2个东西在同一抽屉里。在第二个结论中,不妨想象将5双手套分别编号,即号码为1,2,.,5的手套各有两只,同号的两只是一双。任取6只手套,它们的编号至多有5种,因此其中至少有两只的号码相同。这相当于把6个东西放入5个抽屉,至少有2个东西在同一抽屉里。抽屉原理的一种更一般的表述为:“把多于kn个东西任意分放进n个空抽屉(k是正整数),那么一定有一个抽屉中放进了至少k+1个东西。”利用上述原理容易证明:“任意7个整数中,至少有3个数的两两之差是3的倍数。”因为任一整数除以3时余数只有0、1、2三种可能,所以7个整数中至少有3个数除以3所得余数相同,即它们两两之差是3的倍数。如果问题所讨论的对象有无限多个,抽屉原理还有另一种表述:“把无限多个东西任意分放进n个空抽屉(n是自然数),那么一定有一个抽屉中放进了无限多个东西。”抽屉原理的内容简明朴素,易于接受,它在数学问题中有重要的作用。许多有关存在性的证明都可用它来解决。附件:数字推理解题思路: 1 基本思路:第一反应是两项间相减,相除,平方,立方。所谓万变不离其综,数字推理考察最基本的形式是等差,等比,平方,立方,质数列,合数列。 相减,是否二级等差。 8,15,24,35,(48) 相除,如商约有规律,则为隐藏等比。 4,7,15,29,59,(59*21)初看相领项的商约为2,再看4*2-1=7,7*2+115 2 特殊观察: 项很多,分组。三个一组,两个一组 4,3,1,12,9,3,17,5,(12) 三个一组 19,4,18,3,16,1,17,(2) 2,1,4,0,5,4,7,9,11,(14)两项和为平方数列。 400,200,380,190,350,170,300,(130)两项差为等差数列 隔项,是否有规律 0,12,24,14,120,16(737) 数字从小到大到小,与指数有关 1,32,81,64,25,6,1,1/8每个数都两个数以上,考虑拆分相加(相乘)法。 87,57,36,19,(1*9+1) 256,269,286,302,(302+3+0+2) 数跳得大,与次方(不是特别大),乘法(跳得很大)有关 1,2,6,42,(422+42) 3,7,16,107,(16*107-5) 每三项/二项相加,是否有规律。 1,2,5,20,39,(1252039) 21,15,34,30,51,(102-51) C=A2B及变形(看到前面都是正数,突然一个负数,可以试试) 3,5,4,21,(42-21),446 5,6,19,17,344,(-55) -1,0,1,2,9,(93+1) C=A2+B及变形(数字变化较大) 1,6,7,43,(49+43) 1,2,5,27,(5+272) 分数,通分,使分子/分母相同,或者分子分母之间有联系。/也有考虑到等比的可能 2/3,1/3,2/9,1/6,(2/15) 3/1,5/2,7/2,12/5,(18/7)分子分母相减为质数列 1/2,5/4,11/7,19/12,28/19,(38/30)分母差为合数列,分子差为质数列。 3,2,7/2,12/5,(12/1)通分,3,2 变形为3/1,6/3,则各项分子、分母差为质数数列。 64,48,36,27,81/4,(243/16)等比数列。 出现三个连续自然数,则要考虑合数数列变种的可能。 7,9,11,12,13,(12+3) 8,12,16,18,20,(12*2) 突然出现非正常的数,考虑C项等于 A项和B项之间加减乘除,或者与常数/数列的变形 2,1,7,23,83,(A*2+B*3)思路是将C化为A与B的变形,再尝试是否正确。 1,3,4,7,11,(18) 8,5,3,2,1,1,(11) 首尾项的关系,出现大小乱现的规律就要考虑。 3,6,4,(18),12,24 首尾相乘 10,4,3,5,4,(2)首尾相加 旁边两项(如a1,a3)与中间项(如a2)的关系 1,4,3,1,4,3,( 3(4) ) 1/2,1/6,1/3,2,6,3,(1/2) B项等于A项乘一个数后加减一个常数 3,5,9,17,(33) 5,6,8,12,20,(20*24) 如果出现从大排到小的数,可能是A项等于B项与C项之间加减乘除。 157,65,27,11,5,(11-5*2) 一个数反复出现可能是次方关系,也可能是差值关系 1,2,1,2,(7) 差值是2级等差 1,0,1,0,7,(2662) 1,0,1,8,9,(41) 除3求余题,做题没想法时,试试(亦有除5求余) 4,9,1,3,7,6,( C) A.5 B.6. C.7 D.8 (余
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年智能家居行业智能家居技术应用前景分析研究报告
- 2025年汽车行业智能驾驶技术发展前景分析报告
- 2025年智能机器人行业新产品应用与市场前景研究报告
- 2025年物联网行业发展前景及创新应用研究报告
- 2025年通讯行业5G技术应用与发展前景研究报告
- 宁波市2025年浙江宁波慈溪市招引高层次和紧缺人才15名笔试历年参考题库附带答案详解
- 吉林省2025年吉林省省直事业单位招聘工作人员5号(65人)笔试历年参考题库附带答案详解
- 南宁市2025广西南宁市隆安县招聘乡镇残疾人专职委员1人笔试历年参考题库附带答案详解
- 义乌市2025浙江宁波市义乌市人力资源和社会保障局下属事业单位选调事业编制工作人笔试历年参考题库附带答案详解
- 2025重庆发展投资有限公司及所属企业校园招聘9人笔试参考题库附带答案详解
- 2025年驾驶员安全培训考试试题库卷(答案+解析)
- 无人机培训课件
- 2025辽宁沈阳副食集团所属企业招聘3人考试参考题库及答案解析
- 储罐区的安全题库及答案解析
- 交大入党测试题及答案
- 培训如何开早会的课件
- 2025年河北沧州市中心医院、沧州博施康养集团公开招聘辅助岗工作人员113名考试参考试题及答案解析
- 消防员抗洪抢险知识培训课件
- 历年时事政治试题及答案
- 2025年法考真题及答案
- 摄像基础培训课件
评论
0/150
提交评论