



全文预览已结束
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、添加或舍弃一些正项(或负项)例1、已知求证:证明: 若多项式中加上一些正的值,多项式的值变大,多项式中加上一些负的值,多项式的值变小。由于证明不等式的需要,有时需要舍去或添加一些项,使不等式一边放大或缩小,利用不等式的传递性,达到证明的目的。本题在放缩时就舍去了,从而是使和式得到化简.2、先放缩再求和(或先求和再放缩)例2、函数f(x)=,求证:f(1)+f(2)+f(n)n+.证明:由f(n)= =1-得f(1)+f(2)+f(n).此题不等式左边不易求和,此时根据不等式右边特征, 先将分子变为常数,再对分母进行放缩,从而对左边可以进行求和. 若分子, 分母如果同时存在变量时, 要设法使其中之一变为常量,分式的放缩对于分子分母均取正值的分式。如需放大,则只要把分子放大或分母缩小即可;如需缩小,则只要把分子缩小或分母放大即可。3、先放缩,后裂项(或先裂项再放缩)例3、已知an=n ,求证:3证明:=1 =1 () =1123本题先采用减小分母的两次放缩,再裂项,最后又放缩,有的放矢,直达目标.4、放大或缩小“因式”;例4、已知数列满足求证:证明 本题通过对因式放大,而得到一个容易求和的式子,最终得出证明5、逐项放大或缩小例5、设求证: 证明: , 本题利用,对中每项都进行了放缩,从而得到可以求和的数列,达到化简的目的。6、固定一部分项,放缩另外的项;例6、求证:证明:此题采用了从第三项开始拆项放缩的技巧,放缩拆项时,不一定从第一项开始,须根据具体题型分别对待,即不能放的太宽,也不能缩的太窄,真正做到恰倒好处。7、利用基本不等式放缩例7、已知,证明:不等式对任何正整数都成立.证明:要证,只要证 .因为 ,故只要证 ,即只要证 .因为,所以命题得证.本题通过化简整理之后,再利用基本不等式由放大即可.8、先适当组合, 排序, 再逐项比较或放缩例8、.已知i,m、n是正整数,且1imn.(1)证明:niAmiA;(2)证明:(1+m)n(1+n)m证明:(1)对于1im,且A =m(mi+1),由于mn,对于整数k=1,2,i1,有,所以(2)由二项式定理有:(1+m)n=1+Cm+Cm2+Cmn,(1+n)m=1+Cn+Cn2+Cnm,由(1)知miAniA (1imn ,而C=miCinniCim(1mnm0C=n0C=1,mC=nC=mn,m2Cn2C,mmCnmC,mm+
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 公司电脑安全培训课件
- 汽车市场专员年终总结
- 公司用电安全培训心得课件
- 电解质紊乱病人的护理措施
- 湖北2025年初级招采人员考试(招标采购专业实务)试题库及答案
- 胰岛素C肽结果解读
- 生产部负责人工作总结
- 护士出科总结汇报
- 敦煌开店总结汇报
- 残疾人用工合同范本5篇
- 抑郁病诊断证明书
- 制定合同价格与结算条款的正确方法
- 零售药店医保培训试题及答案,零售药店医保培
- 江苏历年语文高考真题答案
- 外科学-第十一章-外科感染(含案例分析)课件
- 《ch棘皮动物》课件
- 中国服用过兴奋剂运动员名单 兴奋剂真的是毒品吗
- 小学英语语法时态讲解与归纳
- 《生存与修炼》熊厚音讲《道德经》教学文案
- 淘宝新店运营计划书文献
- 产教融合校企合作[可修改版ppt]课件
评论
0/150
提交评论