




已阅读5页,还剩10页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
一、解答题:1.(2015.上海市,第24题,12分) (本题满分12分,每小题满分各4分)已知在平面直角坐标系中(如图),抛物线与轴的负半轴相交于点,与轴相交于点,点在抛物线上,线段与轴的正半轴交于点,线段与轴相交于点设点的横坐标为(1)求这条抛物线的解析式;(2)用含的代数式表示线段的长;(3)当时,求的正弦值2.(2015.上海市,第25题,14分) (本题满分14分,第(1)小题满分4分,第(2)小题满分5分,第(3)小题满分5分)已知:如图,是半圆的直径,弦,动点、分别在线段、上,且,的延长线与射线相交于点、与弦相交于点(点与点、不重合),设,的面积为(1)求证:;(2)求关于的函数关系式,并写出它的定义域;(3)当是直角三角形时,求线段的长【答案】(1)通过证明,过程略;(2);(3),考点:1.三角形全等的判定及性质;2.锐角三角函数的综合应用;3.圆的综合应用.3. (2015.河南省,第23题,11分)(11分)如图,边长为8的正方形OABC的两边在坐标轴上,以点C为顶点的抛物线经过点A,点P是抛物线上点A、C间的一个动点(含端点),过点P作PFBC于点F. 点D、E的坐标分别为(0,6),(-4,0),连接PD,PE,DE. (1)请直接写出抛物线的解析式;(2)小明探究点P的位置发现:当点P与点A或点C重合时,PD与PF的差为定值. 进而猜想:对于任意一点P,PD与PF的差为定值. 请你判断该猜想是否正确,并说明理由;(3)小明进一步探究得出结论:若将“使PDE的面积为整数”的点P记作“好点”,则存在多个“好点”,且使PDE的周长最小的点P也是一个“好点”. 请直接写出所有“好点”的个数,并求出PDE的周长最小时“好点”的坐标.PEOFCDBA图xyPD=+2,PD-PF=+2=2,猜想正确.4. (2015.重庆市A卷,第26题,12分)如图1,在平面直角坐标系中,抛物线交轴于A,B两点(点A在点B的左侧),交轴于点W,顶点为C,抛物线的对称轴与轴的交点为D。(1)求直线BC的解析式;(2)点E(m,0),F(m+2,0)为轴上两点,其中,分别垂直于轴,交抛物线与点,交BC于点M,N,当的值最大时,在轴上找一点R,使的值最大,请求出R点的坐标及的最大值;(3)如图2,已知轴上一点,现以P为顶点,为边长在轴上方作等边三角形QPG,使GP轴,现将QPG沿PA方向以每秒1个单位长度的速度平移,当点P到达点A时停止,记平移后的QPG为,设与ADC的重叠部分面积为s,当点到轴的距离与点到直线AW的距离相等时,求s的值。26题图226题图1 【答案】;(2),;(3)或S=.,由题意,Q点在的角平分线或外角平分线上.当Q点在的角平分线上时,如图:,RMQRNC,故,则CRNCWO,故DN=CD-CN=故.当Q点在的外角平分线上时,如图:QRNWCO,故,故RCMWCO,故CM=在RtQMP中,故在RtCPS中,故S=.考点:二次函数与一次函数、方程、三角形、相似等知识的综合.5. (2015.重庆市B卷,第26题,12分)如图,抛物线与x轴交与A,B两点(点A在点B的左侧),与y轴交于点C. 点D和点C关于抛物线的对称轴对称,直线AD与y轴相交于点E.(1)求直线AD的解析式;(2)如图1,直线AD上方的抛物线上有一点F,过点F作FGAD于点G,作FH平行于x轴交直线AD于点H,求FGH的周长的最大值;(3)点M是抛物线的顶点,点P是y轴上一点,点Q是坐标平面内一点,以A,M,P,Q为顶点的四边形是AM为边的矩形,若点T和点Q关于AM所在直线对称,求点T的坐标.【答案】y=x+1;(0,)或(0,).【解析】试题分析:根据题意得出点A和点D的坐标,然后利用待定系数法求出函数解析式;过点F作x轴的垂线,交直线AD于点M,得出FGHFGM,即然后设点F的坐标,求出FM的长度,从而根据周考点:二次函数的综合应用、三角形相似.6. (2015.北京市,第29题,7分)在平面直角坐标系xOy中,C的半径为r,P是与圆心C不重合的点,点P关于C的反称点的定义如下:若在射线CP上存在一点P,满足CPCP2r.则称P为点P关于C的反称点,下图为点P及其关于C的反称点P的示意图.特别地,当点P与圆心C重合时,规定CP0.(1)当O的半径为1时.分別判断点M(2,1),关于O的反称点是否存在?若存在,求其坐标;点P在直线yx2上,若点P关于O的反称点P存在,且点P不在x袖上,求点P的横坐标的取值范围;(2)C的圆心在x袖上,半径为1,直线与x轴、y轴分別交于点A,B.若线段
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 棉花种植基地承包合同
- 八年级生物下册 第8单元 第24章 第2节 关注农村环境说课稿 (新版)北师大版
- 3.复用材料和新材料说课稿-2025-2026学年初中科学沪教版上海六年级第二学期-沪教版(上海)
- 9.2.1总体取值规律的估计教学设计-2023-2024学年高一下学期数学人教A版(2019)必修第二册
- 中国邮政银行试题及答案
- 电力设施建设担保合同类型及工程质量保障分析
- 厨师技能竞赛选拔与雇佣协议
- 工矿企业安全生产管理与设备检修合同
- 孤独小说家课件
- 液化天然气运输与新能源产业链投资合同
- 售后沟通技巧课件
- 进制转换课件-2025-2026学年浙教版高中信息技术必修一
- 店员绩效考核制度
- 电厂电气安全知识培训课件
- 国际汉语考试题及答案
- 遥控车辆模型课件
- 羽毛球合作协议合同范本
- 2025年全国计算机技术与软件专业技术资格(水平)考试系统集成项目管理工程师押题试卷
- 中国南方航空数字化和双中台方案
- 2025年通信技术认证考试-应急通信认证历年参考题库含答案解析(5套典型题)
- 韩语专业教育与职场应用能力培养融合研究
评论
0/150
提交评论