




已阅读5页,还剩18页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
直线和圆相交 dr dr 直线和圆相切 直线和圆相离 dr o 相交 相切 相离 d d d 温故知新 直线与圆相切的判别方法 方法一 方法二 切线的性质定理 解题策略 1 可用来证明 2 见切点时 构造 3 有切线 未见切点时 可以 则可得 过切点作切线的垂线 则可得 由直线与圆的公共点的个数确定 由圆心到直线的距离与半径相等确定 圆的切线垂直于过切点的直径 垂直 连圆心与切点 rt 过圆心作垂直 切点 直径 如图 ab是 o的直径 直线l经过点a l与ab的夹角为 当l绕点a顺时针旋转时 圆心 到直线l的距离d如何变化 你能写出一个命题来表述这个事实吗 切线的判定 经过直径的一端 并且垂直于这条直径的直线是圆的切线 ab是 o的直径 直线cd经a点 且cd ab cd是 o的切线 这个定理实际上就是 d r直线和圆相切的另一种说法 o oa是直径 l oa l是 o的切线 定理的几何符号表达 经过直径的一端并且垂直这条直径的直线是圆的切线 直线与圆相切的判定定理 切线需满足两条 经过直径外端 垂直于这条直径 1 过半径的外端的直线是圆的切线 2 与半径垂直的的直线是圆的切线 3 过半径的端点与半径垂直的直线是圆的切线 问题 定理中的两个条件缺少一个行不行 两个条件 缺一不可 直线和圆相切的判定方法有那些 1 定义 一条直线和圆有唯一公共点 这条直线叫圆的切线 不常用 3 经过直 半 径的外端且垂直与这条直 半 径的直线是圆的切线 切线的判定定理 c o b a 2 d r 直线和圆相切 即 直线到圆心的距离等于该圆的半径 1 如图 已知直线ab经过 o上的点c 并且oa ob ca cb 那么直线ab是 o的切线吗 a b c o 1 由定理可知 经过三角形三个顶点可以作一个圆 2 经过三角形各顶点的圆叫做三角形的外接圆 3 三角形外接圆的圆心叫做三角形的外心 这个三角形叫做这个圆的内接三角形 三角形与圆的位置关系 回顾 探索 从一块三角形材料中 能否剪下一个圆 使其与各边都相切 i i 上右图就是三角形的内切圆作法 d 1 作 abc acb的平分线bm和cn 交点为i 2 过点i作id bc 垂足为d 3 以i为圆心 id为半径作 i i就是所求 m n 这样的圆可以作出几个呢 为什么 直线be和cf只有一个交点i 并且点i到 abc三边的距离相等 为什么 因此和 abc三边都相切的圆可以作出一个 并且只能作一个 定义 与三角形三边都相切的圆叫做三角形的内切圆 这个三角形叫做圆的外切三角形 内切圆的圆心叫做三角形的内心 是三角形三条角平分线的交点 分别作出锐角三角形 直角三角形 钝角三角形的内切圆 并说明与它们内心的位置情况 提示 先确定圆心和半径 尺规作图要保留作图痕迹 判断题 1 三角形的内心到三角形各个顶点的距离相等 2 三角形的外心到三角形各边的距离相等 3 等边三角形的内心和外心重合 错 错 对 4 三角形的内心一定在三角形的内部 5 菱形一定有内切圆 6 矩形一定有内切圆 对 错 对 例如图 在 abc中 点o是内心 1 若 abc 50 acb 70 求 boc的度数 2 若 a 80度 则 boc 3 若 boc 110度 则 a 如图 ab是 o的直径 abt 450 at ba 求证 at是 o的切线 达标检测 如图 ab是 o的直径 点d在ab的延长线上 bd ob 点c在圆上 cab 300 求证 dc是 o的切线 方法引导 当已知直线与圆有公共点 要证明直线与圆相切时 可先连结圆心与公共点 再证明连线垂直于直线 这是证明切线的一种方法 达标检测 3 在rt abc中 b 90 a的平分线交bc于d 以d为圆心 db长为半径作 d 试说明 ac是 d的切线 f e 达标检测 已知 如图 o是rt abc的内切圆 c是直角 ac 3 bc 4 求 o的半径r a b c o rt 的三边长与其内切圆半径间的关系 b a c 拓展训练 已知 如图 abc的面积s 4cm2 周长等于10cm 求内切圆 o的半径r 斜 的三边长及面积与其内切圆半径间的关系 拓展训练 思考题 如图 某乡镇在进入镇区的道路交叉口的三角地处建造了一座镇标雕塑 以树立起文明古镇的形象 已知雕塑中心m到道路三边ac bc ab的距离相等 ac bc bc 30米 ac 40米 请你帮助计算一下 镇标雕塑中心m离道路三边的距离有多远 课堂小结 1 在证明中熟练应用切线
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 廊坊一模高考数学试卷
- 江苏宿迁市数学试卷
- 2026届河北省衡水市安平中学化学高一上期中教学质量检测模拟试题含解析
- 2025青海省招聘考试题及答案
- 2025年物流专员招聘题目及答案
- 2025年山西省考试题及答案
- 甘肃省酒泉市瓜州县2026届高一化学第一学期期末复习检测模拟试题含解析
- 2025年秋招:人力资源专员笔试真题及答案
- 校园安全心得体会13篇
- 2025年建筑工地安全培训考试题库试题及答案
- 2025年广西公需科目考试试题及答案(供参考)
- 急危重症的观察与护理
- 2025中国南水北调集团新能源投资有限公司中层及职员社会招聘笔试参考题库附带答案详解
- DB64∕ 266-2018 建筑工程资料管理规程
- 资产管理效能提升路径与实践探索
- 2025至2030中国饮用矿泉水行业发展分析及产业运行态势及投资规划深度研究报告
- 高中地理开学第一课高一上学期
- 中学团建活动方案
- 中医药健康管理培训课件
- 撬装加油站培训
- 神经外科症状护理
评论
0/150
提交评论