已阅读5页,还剩30页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
习题解答第一章1.以下化合物,哪些是天然高分子化合物,哪些是合成高分子化合物(1)蛋白质,(2)PVC,(3)酚醛树脂,(4)淀粉,(5)纤维素,(6)石墨,(7)尼龙66,(8)PVAc,(9)丝,(10)PS,(11)维尼纶,(12)天然橡胶,(13)聚氯丁二烯,(14)纸浆,(15)环氧树脂解:天然(1)(4)(5)(6)(9)(12)(14),合成(2)(3)(7)(8)(10)(11)(13)(15)2.试讨论线形聚异戊二烯可能有哪些不同的构型,假定不考虑键接结构(画出结构示意图)。解:聚异戊二烯可能有6种有规立构体,它们是: 顺1,4加成 反1,4加成 3,4加成全同立构 1,2加成全同立构 1,2加成间同立构 3,4加成间同立构常见错误分析:本题常见的错误如下:(1)将1,2加成与3,4加成写反了。 按IUPAC有机命名法中的最小原则,聚异戊二烯应写成 而不是 即CH3在2位上,而不是在3位上。(2)“顺1,4加成又分成全同和间同两种,反1,4加成也分成全同和间同两种。”顺1,4或反1,4结构中没有不对称碳原子,没有旋光异构体。甲基与双键成120角,同在一个平面上。3. 环氧丙烷经开环聚合后,可得到不同立构的聚合物(无规、全同、间同),试写出它们的立构上的不同,并大致预计它们对聚合物性能各带来怎样的影响?*解:聚环氧丙烷的结构式如下:存在一个不对称碳原子(有星号的),因而有以下全同、间同和无规立构体。 全同 间同 无规性能的影响是:全同或间同立构易结晶,熔点高,材料有一定强度;其中全同立构的结晶度、熔点、强度会比间同立构略高一点。无规立构不结晶或结晶度低,强度差。常见错误分析:“只存在间同立构,不存在全同立构。”以上写法省略了H,根据上述结构式,似乎只存在间同不存在全同。这是一种误解,实际上碳的四个价键为四面体结构,三个价键不会在一个平面上。而在平面上表示的只是一个示意,全同与间同的真正区别在于CH3是全在纸平面之上(或之下),或间隔地在纸平面之上和之下。4 试述下列烯类高聚物的构型特点及其名称。式中D表示链节结构是D构型,L是L构型。(1) DDDDDDD(2) LLLLLLL(3) DLDLDLDL(4) DDLDLLL解:(1)全同立构;(2)全同立构;(3)间同立构;(4)无规立构。常见错误分析:“(1)和(2)是均聚;(3)是交替共聚;(4)是无规共聚。”这里是将构型与共聚序列混为一谈。5.写出由取代的二烯 CH3CHCHCHCHCOOCH3经加聚反应得到的聚合物,若只考虑单体的1,4一加成,和单体头一尾相接,则理论上可有几种立体异构?解 该单体经1,4一加聚后,且只考虑单体的头一尾相接,可得到下面在一个结构单元中含有三个不对称点的聚合物: 即含有两种不对称碳原子和一个碳一碳双键,理论上可有8种具有三重有规立构的聚合物。 (a) (b) (c) (d) (e) (f) (g) (h)图l-5 三重有规立构的聚合物(a)反式叠同三重全同立构(trans-erythrotriisotactic)(b)顺式叠同三重全同立构(cis-erythro-triisotactic)(c)反式非叠同三重全同立构(transthreotriisotactic)(d)顺式非叠同三重全同立构(cis-threo-triisotactic)(e)反式非叠同三重间同立构(trans -threoytrisyndiotactic)(f)顺式非叠同三重间同立构(cis -threotrisyndiotactic)(g)反式叠同三重间同立构(trans -erythreoytrisyndiotactic)(h)顺式叠同三重间同立构(cis -erythreotrisyndiotactic)6.以聚丁二烯为例,说明一次结构(近程结构)对聚合物性能的影响?解:单体丁二烯进行配位聚合,由于1,2加成与1,4加成的能量差不多,所以可得到两类聚合物。一类是聚1,2-丁二烯,通式是;另一类是聚1,4-丁二烯,通式是。每一类都可能存在立体异构,如由于一次结构不同,导致聚集态结构不同,因此性能不同。其中顺式聚1,4-丁二烯规整性差,不易结晶,常温下是无定形的弹性体,可作橡胶用。其余三种,由于结构规整易结晶,使聚合物弹性变差或失去弹性,不易作橡胶用,其性能之差详见表1-6。表1-6聚丁二烯的物理性质异构高分子熔点()密度(g/cm3)溶解性(烃类溶剂)一般物性(常温)回弹性2090全同聚1,2-丁二烯1201250.96难硬,韧,结晶性45559092间同聚1,2-丁二烯1541550.96难硬,韧,结晶性顺式聚1,4-丁二烯41.01易无定形硬弹性88909295反式聚1,4-丁二烯1351481.02难硬,韧,结晶性758090937.聚氯乙烯用锌粉在二氧六环中回流处理,结果发现有86左右的氯被脱除,产物中有环丙烷结构,而无CC结构,就此实验事实,说明聚氯乙烯链中单体的键接方式解:聚氯乙烯中头尾相接的单元脱除Cl原子后形成环丙烷结构;而头头相接的单元脱除Cl原子后形成双键。所以该聚氯乙烯链中单体全部为头尾相接。8.有全同立构和无规立构两种聚丙烯,为测定其单体连接顺序,先分别将此两种聚丙烯氯化,并控制每一结构单元平均引入一个C1原子,再脱除HCI,并进一步热裂解成环,则可得到各种取代苯由裂解色谱分析得知,全同立构的裂解碎片中, 1,2,4一三甲苯1,3,5一三甲苯 = 25975;而无规立构物的裂解碎片中,这一比例为95905。试由以上实验数据,推断这两种聚丙烯大分子链的单体连接顺序。解:用例17的方法,三单元组AAA或BBB均环化得1,3,5三甲苯;而其他三单元组AAB,BAA,ABA,BBA,ABB,BAB均环化得1,2,4三甲苯。所以结论是,无规立构聚丙烯中,单体头头连接率为9.5;全同立构聚丙烯中单体头头连接率为2.5。9 (1)由丙烯得到的全同立构聚丙烯有无旋光性? (2)假若聚丙烯的等规度不高,能不能用改变构象的办法提高等规度?解:(1)无旋光性。 (2)不能。提高聚丙烯的等规度须改变构型,而改变构型与改变构象的方法根本不同。构象是围绕单键内旋转所引起的排列变化,改变构象只需克服单键内旋转位垒即可实现;而改变构型必须经过化学键的断裂才能实现。10.近程相互作用和远程相互作用的含义及它们对高分子链的构象有何影响?解:所谓“近程”和“远程”是根据沿大分子链的走向来区分的,并非为三维空间上的远和近。事实上,即使是沿高分子长链相距很远的链节,也会由于主链单键的内旋转而会在三维空间上相互靠的很近。高分子链节中非键合原子间的相互作用近程相互作用,主要表现为斥力,如中两个C原子上的H原子,两个H原子的范德华半径之和为0.240nm,当两个H原子为反式构象时,其间的距离为0.247 nm ,处于顺式构象时为0.226nm。因此,H原子间的相互作用主要表现为斥力,至于其它非键合原子间更是如此。近程相互排斥作用的存在,使得实际高分子的内旋转受阻,使之在空间可能有的构象数远远小于自由内旋转的情况。受阻程度越大,构象数就越少,高分子链的柔性就越小。远程相互作用可为斥力,也可为引力。当大分子链中相距较远的原子或原子团由于单键的内旋转,可使其间的距离小于范德华距离而表现为斥力,大于范德华距离为引力。无论哪种力都使内旋转受阻,构象数减少,柔性下降,末端距变大。高分子链占有体积及交联和氢键等都属于远程相互作用。11.计算相对分子质量为106的线形聚苯乙烯分子的均方根末端距 (1)假定链自由取向(即自由结合) (2)假定在一定锥角上自由旋转解:n = 2106/104=19231l = 0.154nm(1) (2) 12.(1)计算相对分子质量为280 000的线形聚乙烯分子的自由旋转链的均方末端距。键长0.154nm,键角为109.5;(2) 用光散射法测得在溶剂中上述样品的链均方根末端为56.7nm,计算刚性比值;(3) 由自由旋转链的均方末端距求均方旋转半径。解:(1)22100001.542=949nm2 (2) =1.84 (3) =158nm213.已知顺式聚异戊二烯每个单体单元是0.46nm,而且,问这个大分子的统计上等效自由结合链的链段数和链段长度。(注:这里n为单体单元数目)解:,联立此两方程,并解二元一次方程得,14. 长度足够大的高分子链,可用以链段为统计单元的等效自由取向链来统计处理今有一个大分子A,含有p个自由取向的链段,另有一个大分子B,含有q个自由取向链段现将B分子接枝到A分子的正中链段上,若接枝前后的三种大分子的链段长度不变,其数值均为b求从A分子的一端到此支化分子的另二端A/及B的均方末端距为多大pAABq解:,15.试从下列高聚物的链节结构,定性判断分子链的柔性或刚性,并分析原因解:(1)柔性。因为两个对称的侧甲基使主链间距离增大,链间作用力减弱,内旋转位垒降低。 (2)刚性。因为分子间有强的氢键,分子间作用力大,内旋转位垒高。(3)刚性。因为侧基极性大,分子间作用力大,内旋转位垒高。(4)刚性。因为主链上有苯环,内旋转较困难。(5)刚性。因为侧基体积大,妨碍内旋转,而且主链与侧链形成了大键共轭体系,使链僵硬。16. 比较以下两种聚合物的柔顺性,并说明为什么? 解:聚氯丁二烯的柔顺性好于聚氯乙烯,所以前者用作橡胶而后者用作塑料。聚氯乙烯有极性的侧基Cl,有一定刚性。聚氯丁二烯虽然也有极性取代基Cl,但Cl的密度较小,极性较弱,另一方面主链上存在孤立双键,孤立双键相邻的单键的内旋转位垒较小,因为键角较大(120而不是109.5),双键上只有一个H原子或取代基,而不是两个。17. 比较以下三个聚合物的柔顺性,从结构上简要说明原因。解:(1)的刚性最大,因为双键与苯环共轭;(2)的柔性最大,因为双键是孤立双键;(3)介于中间。18. 下表数据说明了什么?试从结构上予以分析:聚合物的刚性因子 聚二甲基硅氧烷 1416 聚异戊二烯 1517 聚乙烯 183 聚苯乙烯 2224硝化纤维素 42解:刚性因子越大,说明分子链刚性越大,或柔性越小。(1)聚二甲基硅氧烷:由于SiO键中氧原子周围没有侧基,而且SiO键的键长较大,SiOSi的键角也较大,所以内旋转容易,分子链极为柔顺。(2)聚异戊二烯:由于双键上的侧基(或原子)数目较单键少,键角120大于一般单键的109.5,所以孤立双键邻近的单键内旋转位垒较少,分子链也非常柔顺。(3)聚乙烯:具有一定柔顺性。(4)聚苯乙烯:侧基较大,由于空间位阻对内旋转不利,从而刚性比聚乙烯大。(5)硝化纤维素:主链上的六元环结构使内旋转困难。而且分子间能形成氢键,侧硝酸酯基也有极性,这些因素都大大增加分子刚性。19. 在特种溶剂中在不同温度时测得下列高聚物的值如下表,试求它们的刚性因子。你计算所得的结果与聚异丁烯是橡胶及聚苯乙烯是塑料有没有矛盾? 又温度对分子链的刚硬性有什么影响? (提示:先算出 )。聚合物温度()PIB2495795757PMMA30680PS2570735710解:先求出 式中:M0为链节相对分子质量代入式得,结果列于下表高聚物M0温度/聚异丁烯56241.93951.84聚甲基丙烯酸甲酯100302.21聚苯乙烯104252.43702.35可见,(1)聚异丁烯柔性大,是橡胶;聚苯乙烯和聚甲基丙烯酸甲酯刚性大,是塑料。计算结果与实际一致。(2)随着温度提高,减少,即刚性减少。第二章1 根据高聚物的分子结构和分子间作用能,定性地讨论表2-1中所列各高聚物的性能。表2-1线形高聚物的内聚能密度高聚物内聚能密度高聚物内聚能密度兆焦/米3卡/厘米3兆焦/米3卡/厘米3聚乙烯25962聚甲基丙烯酸甲酯34783聚异丁烯27265聚醋酸乙烯酯36888天然橡胶28067聚氯乙烯38191聚丁二烯27666聚对苯二甲酸乙二酯477114丁苯橡胶27666尼龙66774185聚苯乙烯30573聚丙烯腈992237解:(1)聚乙烯、聚异丁烯、天然橡胶、聚丁二烯和丁苯橡胶都有较好的柔顺性,它们适合于用作弹性体。其中聚乙烯由于结构高度对称性,太易于结晶,从而实际上只能用作塑料,但从纯CC单键的结构来说本来应当有很好的柔顺性,理应是个橡胶。(2)聚苯乙烯、聚甲基丙烯酸甲酯、聚醋酸乙烯酯和聚氯乙烯的柔顺性适中,适合用作塑料。(3)聚对苯二甲酸乙二酯、尼龙66和聚丙烯腈的分子间作用力大,柔顺性较差,刚性和强度较大,宜作纤维。可见一般规律是内聚能密度100的为纤维。2. 已知聚丙烯的熔点Tm=176,结构单元熔化热Hu=8.36kJmol-1,试计算: (1)平均聚合度分别为6、10、30、1000的情况下,由于端链效应引起的Tm下降为多大?(2)若用第二组分和它共聚,且第二组分不进入晶格,试估计第二组分占10摩尔分数时共聚物的熔点为多少?解 (1) 式中,To=176=449K,R=8.31Jmol-lK-1,用不同值代入公式计算得到:Tm1=337K(104),降低值176104=72Tm2=403K(130),降低值176130=46Tm3=432K(159),降低值176159=17Tm4=448K(175),降低值176175=1可见当1000时,端链效应开始可以忽略.(2)由于XA=0.9,XB=0.1Tm=428.8K (156)3. 试推导用密度法求结晶度的公式 式中为样品密度,c为结晶部分密度,a为非晶部分密度解:4证明xmA(1-/),其中A取决于聚合物的种类,但与结晶度无关。如果某种聚合物的两个样品的密度为1346和1392Kgm-3,通过X光衍射测得xm为10和50,计算和,以及密度为1357Kgm-3的第三个样品的质量结晶度。解:xm()()A(1)式中A= 与样品的结晶度无关。上式两边乘以,xmA(-)代入两个样品的密度和结晶度值, 得到1335 Kgm-3。将第二个样品的数据代入xmA(-)得1/A=0.51392/(13921335)12.21而1/A=1-/,于是=1454 Kgm-3对于第三个样品,xmA(1-)12.21(11335/1357)=0.198(或19.8)5. 回答密度梯度管法测定聚合物结晶度实验中的以下几个问题: (1)如何选择轻液和重液?(2)如何保证梯度分布好并且稳定?(3)如何提高梯度管的灵敏度?(4)为什么试样要用轻液浸润?不浸润会有什么后果?(5)标准玻璃小球的密度是在20时标定的,能否在30时使用?解:(1)a、两种液体必须能无限混溶且具有体积加和性。混和时不起化学作用。液体最好是无色的。 b、对被测高聚物应当没有溶解、溶涨或显著的诱导结晶作用。c、两种液体的密度值差别应当适当,最合适的情况应使梯度管适合所测定的聚合物密度范围,又有最小的灵敏度值。d、必须具有低的黏度和挥发性。e、两种液体的混合物易于分离回收。f、价格便宜,或来源方便。(2)a、B杯要搅拌均匀。 b、掌握好“A杯轻液刚好能流入B杯”的操作。c、流速掌握在46mL/min,以保证流速uB2uA。由于B杯压力头下降,流速uB有逐渐减慢的趋势,因而要精心控制,但不易太多地调节,以免被动。d、移动梯度管必须十分小心,放入玻璃球和样品的动作要很轻。如果在测定过程中必须取出玻璃小球或样品时,必须用细金属丝做成的网篮以极其缓慢(25分/250mm即1cm/1分钟)的速度取出。e、对于精确的测定,必须恒温进行,因为液体的膨胀系数较大,例如四氯化碳0.00194/,苯0.00105/。(3)适当减小轻液和重液间的密度差。(4)梯度管上层为轻液,用轻液浸润的玻璃小球投入管中后扰动较小。不浸润会使测定结果偏低,由于试样表面有小气泡而上浮。(5)可以使用。因为玻璃的体膨胀系数很小,只有0.000025/。假定玻璃球是实心的,则从20升到30时,玻璃球的体积膨胀了0.00025倍,即成为原来体积的1.00025倍,也就是说玻璃球的密度下降为原来的1/1.00025倍。原玻璃球20的密度以其上限2.8计算,则30时成为2.7993,减少了0.0007g/cm3,这个数目比实验中梯度管的灵敏度0.002 g/cm3小,因而不会产生显著误差。如果考虑到玻璃球是空心时,其密度减少的数目将更小。6. 将下列三组聚合物的结晶难易程度排列成序:(1)PE,PP,PVC,PS,PAN;(2)聚对苯二甲酸乙二酯,聚间苯二甲酸乙二酯,聚己二酸乙二酯;(3)PA 66,PA 1010解:结晶难易程度为: (1)PEPANPPPVCPS(2)聚己二酸乙二酯PET聚间苯二甲酸乙二酯由于聚己二酸乙二酯柔性好,而聚间苯二甲酸乙二酯对称性不好。(3)尼龙66尼龙1010由于尼龙66分子中的氢键密度大于尼龙1010。7. 有两种乙烯和丙烯的共聚物,其组成相同(均为65乙烯和35丙烯),但其中一种室温时是橡胶状的,一直到稳定降至约70时才变硬,另一种室温时却是硬而韧又不透明的材料。试解释它们内在结构上的差别。解:前者是无规共聚物,丙烯上的甲基在分子链上是无规排列的,这样在晶格中难以堆砌整齐,所以得到一个无定形的橡胶状的透明聚合物。后者是乙烯和有规立构聚丙烯的嵌段共聚物,乙烯的长嵌段堆砌入聚乙烯晶格,而丙烯嵌段堆砌入聚丙烯晶格。由于能结晶从而是硬而韧的塑料,且不透明。错误分析:“前者是交替共聚物”。交替共聚物的结构规则性也很好,也易结晶。8. 为什么聚对苯二甲酸乙二酯从熔体淬火时得到透明体?为什么IPMMA是不透明的? 解:聚对苯二甲酸乙二酯的结晶速度很慢,快速冷却时来不及结晶,所以透明。等规PMMA 结晶能力大,结晶快,所以它的试样是不透明的。9. 试分析聚三氟氯乙烯是否结晶性聚合物?要制成透明薄板制品,问成型过程中要注意什么 条件的控制?解:是结晶性聚合物,由于氯原子与氟原子大小差不多,分子结构的对称性好,所以易结晶。成型过程中要使制品快速冷却,以降低结晶度并使晶粒更细小,才能得到透明薄板。10. 聚合物在结晶过程中会发生体积收缩现象,为什么? 图2-10是含硫量不同的橡皮在结 晶过程中体积改变与时间的关系,从这些曲线关系能得出什么结论?试讨论之。图210 含硫量不同的橡皮在结晶过程中体积改变与时间的关系解:结晶中分子链的规则堆砌使密度增加,从而结晶过程中发生体积收缩。橡胶含硫量增加,减少了结晶能力,结晶程度和结晶速度都下降,表现在曲线最大的体积收缩率和曲线斜率都减少。11. 透明的聚酯薄膜在室温二氧六环中浸泡数分钟就变为不透明,这是为什么? 解:称溶剂诱导结晶,有机溶剂渗入聚合物分子链之间降低了高分子链间相互作用力,使链段更易运动,从而Tg降低至室温以下而结晶。12.(1)将熔融态的聚乙烯(PE)、聚对苯二甲酸乙二醇酯(PET)和聚苯乙烯(PS)淬冷 到室温,PE是半透明的,而PET和PS是透明的。为什么?(2)将上述的PET透明试样,在接近玻璃化温度下进行拉伸,发现试样外观由透明 变为混浊,试从热力学观点来解释这一现象。解:(1)当光线通过物体时,若全部通过,则此物体是透明的。若光线全部被吸收,则此物体为黑色。对于高聚物的晶态结构总是晶区与非晶区共存,而晶区与非晶区的密度不同,物质的折光率又与密度有关,因此,高聚物的晶区与非晶区折光率不同。光线通过结晶高聚物时,在晶区界面上必然发生折射、反射和散射,不能直接通过,故两相并存的结晶高聚物通常呈乳白色,不透明或半透明,如聚乙烯、尼龙等。当结晶度减小时,透明度增加。对于完全非晶的高聚物,光线能通过,通常是透明的,如有机玻璃、聚苯乙烯等。另外结晶性高聚物要满足充要条件(化学结构的规整性和几何结构的规整性,温度和时间)才能结晶,否则是不可能的。PE由于结晶能力特别强,用液氮(-193)将其熔体淬冷也得不到完全非晶体,总是晶区与非晶区共存,因而呈现半透明。PET是结晶能力较弱的聚合物,将其熔体淬冷,由于无足够的时间使其链段排入晶格,结果得到的是非晶态而呈透明性。PS没加任何说明都认为是无规立构的。无规立构的PS在任何条件下都不能结晶,所以呈现透明性。(2)PET在接近进行拉伸,由于拉伸使得大分子链或链段在外力的方向上取向而呈现一定的有序性,使之容易结晶。由于结晶,使之由透明变为混浊。拉伸有利于结晶,在热力学上是这样解释的:根据,已知结晶过程是放热和有序排列的过程,所以0,0。要使得结晶过程自发进行,势必要求,也就是说越小越好,设未拉伸的非晶态的熵为,结晶后的熵为,拉伸后非晶态的熵为。显然,拉伸的试样,未拉伸试样的。那么就有(),故拉伸有利于结晶。13. 三类线形脂肪族聚合物(对于给定的n值)的熔点顺序如下所示,解释原因。聚氨酯 聚酰胺 聚脲解: 聚氨酯链含有柔性的O键,较大,因而较低。另一方面聚酰胺与聚氨酯的氢键相差不多,聚酰胺与聚脲有相同的柔顺性,但聚脲的氢键比聚酰胺强的多,即分子间作用力强得多,也就是较大,从而熔点较高。14. 让聚乙烯在下列条件下缓慢结晶,各生成什么样的晶体?(1) 从极稀溶液中缓慢结晶;(2) 从熔体中结晶;(3) 极高压力下固体挤出;(4) 在溶液中强烈搅拌下结晶。解:(1)从极稀溶液中缓慢结晶得到的是单晶体。1957年Keller在极稀溶液中,于附近,缓慢地冷却或滴加沉淀剂使聚乙烯结晶,得到了菱形的聚乙烯折叠链的单晶。(2)从熔体中结晶,得到的是多晶的球晶,球晶的基本单元仍是折叠链晶片。(3)在极高压力下得到的是伸直链的晶体。如聚乙烯在226、4800大气压下,结晶8h,得到完全伸直链的晶体。其熔点由原来的137提高到140.1。(4) 溶液中强烈搅拌结晶,得到的是串晶。因为搅拌相当于切应力的作用,使结晶与取向同时进行。串晶由两部分组成,中间为伸直链的脊纤维,周围为折叠链的片晶形成的附晶。由于结晶是在分子链的主线上成核,在垂直方向上长大,因而得到的是串晶。15. 由什么事实可证明结晶高聚物中有非晶态结构 解:(1)从结晶聚合物大角X光射线图上衍射花样和弥散环同时出现可以得证。 (2)一般测得的结晶聚合物的密度总是低于由晶胞参数计算的完全结晶的密度。如PE实测0.930.96,而从晶胞参数计算出c1.014g/cm3,可见存在非晶态。错误分析:“从材料不透明可以证明有非晶的存在”。一般来说有结晶存在时高分子材料常为不透明,这是由于高聚物是结晶与非晶并存,在两相界面上会反射或散射光。但不能说不透明就一定有非晶或有结晶存在,因为填料、缺陷等许多因素都会影响材料的透明性。16. 试用两种方法证明PS本体符合Flory无规线团模型 解:(1)对无规PS本体和溶液分别进行中子小角散射实验,从高聚物本体测得的均方旋 转半径和溶液中测得的结果相近,从而证明了无规PS本体为无规线团构象。 (2)在PS本体和溶液中,分别用高能辐射使高分子发生分子内交联。实验结果并未发现本体体系发生内交联的倾向比溶液中更大,说明本体中并不存在诸如紧缩的线团或折叠链等局部有序结构。错误分析:(1)“结晶聚苯乙烯的均方旋转半径与熔体的均方旋转半径相等。”错误在于普通的聚苯乙烯是非晶的,只有全同聚苯乙烯才能结晶。(2)“中等角度的中子散射实验”中子散射与X光散射类似,也是小角度上才能测得的均方旋转半径。17. 试述聚合物结晶与非晶结构模型。 分析:答题之前,先弄清“模型”这个词的含义。这里的“模型”不是指飞机之类的实物模型,而是指聚合物聚集态的微观结构,是根据一些实验事实,推想出的微观结构的样子。解:(1)结晶高聚物的结构模型: 两相结构模型,又叫缨状胶束模型或织态结构模型,它是把整块高聚物看出是晶体嵌在无定形之中。实验依据:X-射线衍射图案中,除有代表晶区结构的衍射环外,还有与非晶区对应的弥散环;高聚物的熔点是个范围;高分子晶体尺寸为10060010-8cm,小于高分子链长(10-410-3cm)。模型要点:单个大分子能同时穿过一个或几个晶区和非晶区,所以晶区和非晶区两相共存且不分离;晶区是若干个分子链段规整堆砌而成,链段轴与晶轴平行;非晶区中大分子链仍是无规卷曲且相互缠结;结晶度是晶区所占聚集体中的百分数。能解释的事实:晶区尺寸小于高分子链长,结晶不完善和熔点是个范围。不能解释的事实:聚癸二酸乙二醇酯是球晶,用苯腐蚀后,非晶部分消失,只剩下发射状的晶区。这说明晶区与非晶区相互共存,但可分离,另外,现在可制备出结晶度高达90的聚合物,这用两相结构模型是不能解释的,特别是单晶的发现,使人们对这个模型的真实性表示怀疑。现仍可用于解释快速结晶得到的结晶结构。规整折叠链结构模型:把高聚物晶体看出是有链规整折叠的片晶所构成。实验依据:很多高聚物在适宜的条件下,都能生成单晶体,不同高聚物的单晶外形不同;晶片的厚度大都为10-6cm,但分子链长却为10-410-3cm,所以晶片的厚度与相对分子质量无关;电子衍射发现分子链方向与晶片表面垂直。模型要点:在不影响键长、键角且表面能最小的前提下,整个大分子链是规整地反复地排入晶格的;为了使体系能量更低、更稳定,大分子链折叠时有自动调整厚度的倾向,且晶片厚度为10-6cm最合适,这个数值是通过计算得出的。也可作如下的定性解释:若折叠的厚度越小,比表面积就越大,则表面能越小,为了减少表面能,要求折叠的越小越好。但大分子链折叠的厚度越小,拐的弯子就越多,在拐弯处为旁式构象,其余为反式构象。所以,晶片厚度越小,所含的旁式构象就越多,体系的能量就越高,越不稳定。这两种反向作用的结果,使晶片厚度恰好为10-6cm时最合适。能解释的事实:高分子为什么能形成单晶,而晶片的厚度又与相对分子质量无关。不能解释的事实:高聚物取向后,强度增加;X-射线衍射为什么有弥散环?晶体密度小于按晶胞参数计算的理论值。松散折叠链模型:实验依据:电子显微镜、核磁共振和其他实验研究发现,即使在高聚物单晶中,仍然存在着晶体缺陷,特别是有些单晶的表面结构非常松散,使单晶的密度远小于理想晶体的密度值,并测得单晶的结晶度为7585。这说明即使是单晶,其表面层在一定程度上也是无序的。基于这些实验事实,Fisher提出了松散折叠链模型,作为对原来规整折叠链模型的一种修正。模型要点:在结晶高聚物的晶片中,仍以折叠的分子链为基本结构单元,只是折叠处可能是一个环圈,松散而不规整(相当于非晶区),而在晶片中,分子链的相连链段仍然是相邻排列的。插线板模型:Flory以聚乙烯的熔体结晶为例,进行了半定量的推算,证明由于聚乙烯分子的无规线团在熔体中松弛的时间太长,而实验观察到聚乙烯的结晶速度又很快,结晶时分子链根本来不及作规整的折叠,而只能是局部链段无规地排入晶片中。在同一个晶片中,可以是同一个分子链的链段,也可以是其他大分子链的链段,根本不全是由同一个分子链相连接的链段。因此,对同一层晶片而言,其中链的排列方式与老式电话交换台的插线板相似。晶片表面上的分子链就像插头电线那样,毫无规则,也不紧凑,构成非晶区。所以这种模型称为插线板模型。伸直链模型:1969年有人用固态聚合制得聚双炔类宏观单晶体,其中大分子链是完全伸直的,如图2-6所示。单晶体积较大,可达厘米级。伸直的分子链方向平行于晶面,晶体的强度很大。另外,聚乙烯在高压下也可以得到完全伸直链的晶体(见图2-1)。图2-17 聚双炔单晶隧道折叠链模型:鉴于实际高聚物结晶大多是晶相与非晶相共存,各种结晶模型都有其片面性,Hosemann综合了各个结晶模型的特点,提出了一种折衷的模型,称为隧道折叠链模型。它包括了在高聚物晶态结构中所有可能存在的各种形态。因而特别适用于描述半晶聚合物中复杂的结构形态。目前晶态的多种模型围绕主要是近邻折叠和基本上无近邻折叠还在争论之中。(2)高聚物非晶态的结构模型:两相模型(或两相球粒模型):实验事实:实验测得许多高聚物非晶与结晶密度比0.850.96,而按分子链呈无规线团形态的完全无序的模型计算 PET(267) PP (176) PE(137) 顺1,4聚丁二烯(12)由于TmHm/Sm,H增大或S减少的因素都使Tm增加。(1)PTFE:由于氟原子电负性很强,F原子间的斥力很大,分子采取螺旋构象(136),分子链的内旋转很困难,S很小,所以Tm很高。(2)PET:由于酯基的极性,分子间作用力大,所以H大;另一方面由于主链有芳环,刚性较大,S较小,所以总效果Tm较高。(3)PP:由于有侧甲基,比PE的刚性大,S较小,因而Tm比PE高。(4)顺1,4聚丁二烯:主链上孤立双键柔性好,S大,从而Tm很低。19. 列出下列单体所组成的高聚物熔点顺序,并说明理由 CH3CHCH2; CH3CH2CHCH2; CH2CH2 CH3CH2CH2CH=CH2; CH3CH2CH2CH2CH2CH=CH2解:聚丙烯聚乙烯聚丁烯-1聚庚烯-1 聚丙烯由于侧甲基的空间阻碍,增加了刚性,从而S较小,Tm较PE高。另一方面从聚丁烯-1到聚庚烯-1,随着柔性侧基增长,起了类似增塑的作用,S增大,从而Tm较PE低,侧基越长,Tm越低。20. 解释为什么PE和聚四氟乙烯的内聚能相差不多,而熔点相差很大。PET和尼龙66的内 聚能相差很大,而熔点却基本相同。 表220 几种聚合物内聚能与熔点的比较聚合物内聚能Tm()PE1.3137聚四氟乙烯1.6327PET1.9265尼龙663.4264解:(1)PE与PTFE都是非极性高分子,分子间作用力差不多,即H差不多。但由于氟原子电负性很强,氟原子间的斥力很大,分子链的内旋转很困难,分子刚性很大,从而S很小,Tm很高。 (2)尼龙66的分子间作用力(由于氢键)大于PET,所以H较大,另一方面尼龙66的分子链无苯环,内旋转较容易,柔性大,S较大。H和S的影响相互抵消,从而Tm差不多。21. 预计由以下单体聚合而成的全同立构聚合物哪一个Tm较高 解: 的Tm大于因为前者刚性大,S较小,Tm较高。22. 均聚物A的熔点为200,其熔融热为8368J/mol重复单元,如果在结晶的AB无规共 聚物中,单体B不能进入晶格,试预计含单体B10%mol分数的AB无规共聚物的熔点。解:杂质使熔点降低的关系是 杂质的mol分数 单体B 10%,可见为杂质,纯单体A的熔点 重复单元 讨论:如果用代入也可,得23. 如果在上题中的均聚物A中分别引入10.0%体积分数的增塑剂,假定这两种增塑剂的 值分别为0.200和0.200,试计算这两种情况下高聚物的熔点,并与上题结果 比较,讨论共聚和增塑对熔点影响的大小,以及不同增塑剂降低聚合物熔点的效应大小。解:增塑剂使熔点降低的关系是稀释剂的体积分数 当时,当时,可见良溶剂(相容性好的增塑剂)比不良溶剂使高聚物Tm降低的效应更大。共聚作用在降低Tm的效应方面比增塑更有效。24. 聚对苯二甲酸乙二酯的平衡熔点,熔融热千焦/摩尔重复单元,试预计相对分子质量从10,000增大到20,000时,熔点将升高多少度?解:, (对M110000) (对M220000)熔点升高1.8。25. 简要回答如何设计高Tm的高分子?解:大,小。即分子间作用力大,刚性大的高分子,。26. 将PET(商品名为Mylar或Dacron)从300(状态1)快速冷却到室温。产生的材料是刚性的和完全透明的(状态2)。然后将此试样加入至100(状态3)并维持在此温度,在此期间它逐渐变为不透明(状态4),接着冷却到室温又发现变硬,此时是不透明而不是透明体(状态5)。该聚合物的Tm267,Tg69。画出比容对温度的曲线草图,在图上标出Tm和Tg,以及上述状态1到状态5所在的位置。解:如图226所示,虚线代表快速冷却时得到的亚稳非晶态(状态2),在Tg到Tm之间退火会结晶化(状态3变化到状态4)。图226 PET的比容对温度的曲线27. 区别晶态与取向态。解:小分子晶体结晶完全,称为晶相。高聚物由于相对分子质量大,体系黏度大,活动迟缓,虽然某些高聚物可以结晶,但结晶很不完善,总是晶区伴随着非晶区,这种晶区与非晶区共存的宏观聚集态叫晶态。高聚物在外力作用下大分子链或链段沿外力方向有序排列,这样的聚集态为取向态,通常为单轴取向和双轴取向。如纤维是单轴取向,薄膜一般为双轴取向。结晶和取向不同。结晶是分子链紧密堆积、体系能量最低的热力学稳定体系,晶体中分子间排列为三维有序;取向是熵减少的非稳定体系,一般只有一维或二维有序。28.何谓高聚物的取向?为什么有的材料(如纤维)进行单轴取向,有的材料(如薄膜),则需要双轴取向?说明理由。解:当线型高分子充分伸展的时候,其长度为宽度的几百、几千甚至几万倍,具有明显的几何不对称性。因此,在外场作用下,分子链、链段及结晶高聚物的晶片、晶带将沿着外场方向排列,这一过程称为取向。对于不同的材料,不同的使用要求,要采用不同的取向方式,如单轴取向和双轴取向。单轴取向是高聚物材料只沿一个方向拉伸,分子链、链段或晶片、晶带倾向于沿着与拉伸方向平行的方向排列。对纤维进行单轴取向,可以提高取向方向上纤维的断裂强度和冲击强度(因断裂时主价键的比例增加),以满足其应用的要求。双轴取向是高聚物材料沿着它的平面纵横两个方向拉伸,高分子链倾向于与平面平行的方向排列,但在此平面内分子链的方向是无规的。薄膜虽然也可以单轴拉伸取向,但单轴取向的薄膜,其平面内出现明显的各向异性,在平行于取向的方向上,薄膜的强度有所提高,但在垂直于取向方向上却使其强度下降了,实际强度甚至比未取向的薄膜还差,例如包装用的塑料绳(称为撕裂薄膜)就是这种情况。因此,薄膜需要双轴取向,使分子链取平行于薄膜平面的任意方向。这样,薄膜在平面上就是各向同性,能满足实际应用的要求。第三章1 什么是溶度参数? 聚合物的怎样测定? 根据热力学原理解释非极性聚合物为什么能够溶解在其相近的溶剂中?解:(1)溶度参数是内聚能密度的开方,它反映聚合物分子间作用力的大小。(2)由于聚合物不能汽化,不能通过测汽化热来计算。聚合物的常用溶胀度法,浊度法和黏度法测定。(3)溶解自发进行的条件是混合自由能, 对于非极性聚合物,一般(吸热), 所以只有当时才能使。 ,越小越好。 越小越好,即与越接近越好。2. 试指出下列结构的聚合物,其溶解过程各有何特征: (1)非晶态聚合物,(2)非极性晶态聚合物,(3)极性晶态聚合物,(4)低交联度的聚合物解:(1)非极性非晶态聚合物易溶于溶度参数相近的溶剂;极性非晶态聚合物要考虑溶剂化原则,即易溶于亲核(或亲电)性相反的溶剂。 (2)非极性晶态聚合物难溶,选择溶度参数相近的溶剂,且升温至熔点附近才可溶解。 (3)极性晶态聚合物,易溶,考虑溶剂化原则。 (4)低交联度聚合物只能溶胀而不能溶解。3.由高分子的混合自由能(),导出其中溶剂的化学位变化(),并说明在什么条件下高分子溶液中溶剂的化学位变化,等于理想溶液中溶剂的化学位变化 解: 则当溶液浓度很稀时,当,且高分子与溶剂分子体积相等时,而理想溶液 则此时:4.(1)FloryHuggins用统计热力学方法推导出高分子溶液的混合熵 与理想溶液混合熵相比,问何者较大?申述其故。 (2)FloryHuggins推导的过程中,有何不够合理的情况?解:(1)Sm比要大得多。这是因为一个高分子在溶液中不止起一个小分子的作用。 (2)主要有三方面不合理: 没有考虑三种相互作用力不同会引起溶液熵值减小,从而结果偏高。高分子混和前的解取向态中,分子间相互牵连,有许多构象不能实现,而在溶液中原来不能实现的构象就有可能表现出来,从而过高地估计解取向态的熵,因而Sm结果偏低。高分子链段均匀分布的假定在稀溶液中不合理。应象“链段云”。5. 写出摩尔组分1和摩尔组分2混合形成理想溶液的自由能。解:式中:X1和X2分别是组分1和组分2的摩尔分数。6. 试由高分子溶液的混和自由能导出其中溶剂的化学位变化,并说明在什么条件下高分子溶液中溶剂的化学位变化等于理想溶液中溶剂的化学位变化。解:(1) , 即 , 将12的定义式代入 (考虑211) 当溶液很稀时, 取两项 (2)在溶液中 则 又 所以在溶液中 7. 试讨论聚合物的温度及其实验测定方法。解:(1)温度的讨论温度又叫Flory温度。Flory等提出,高分子溶液对理想溶液的偏离是因为混合时有热的贡献及熵的贡献两部分引起的。热的贡献可用“热参数”表征,熵的贡献可用“熵参数”来表征。和是无因次量。当高分子溶液是稀溶液时,不依赖于任何模型,其超额的偏摩尔自由能或超额化学势可表达如下(忽略的高次项): 又因为比较上两式得:,定义,是一个温度参数。则对于一个特定体系,是一个特征温度。当体系温度时,此体系得到了一系列的特征值,一维溶胀因子,式中, a,排除体积为零,所以也称为体系的“临界特征温度”。在此温度下,高分子链段与溶剂间使分子链伸展的作用力与高分子链段间使分子卷曲的作用力相等,即大分子链受力平衡,表现出既不伸展也不卷
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- TGECS 002-2022 基桩自平衡法静载试验荷载箱应用技术规程
- GB 50513-2009 城市水系规划规范(2016年版)
- 宏桥集团面试题及答案
- 金融行业数字化转型趋势
- 品牌建设市场分析报告
- 公务员面试叛逆面试题及答案
- 公务员面试脉络面试题及答案
- 互联网架构师招聘笔试题及答案
- 公务员面试理性面试题及答案
- 海尔集团秋招试题及答案
- 2025年江苏省宿迁市辅警考试真题及答案
- 隧道值守员安全培训课件
- 2025北京中国人民大学通州校区建设部招聘1人考试参考试题及答案解析
- 皮肤性病学十三五教材第二十九章性传播疾病
- 桦树汁收集创新创业项目商业计划书
- 军用无人机讲解课件
- 创伤骨科面试题目及答案
- 高中生物学会考大通关必修1
- 喷漆外包管理办法
- 【MOOC答案】《创新与创业管理》(南京邮电大学)章节作业慕课答案
- 安徽职称管理办法
评论
0/150
提交评论