




免费预览已结束,剩余1页可下载查看
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
三元一次方程组教学设计 教材分析 教学目标三元一次方程组在内容上要让学生理解三元一次方程组概念的同时,要让学生理解为什么要用三元一次方程组甚至多元方程组去求解实际问题的必要性,从而掌握本堂课的基础知识在教学的过程中,要让学生充分理解对复杂的实际问题方程中元越多,等量关系的建立就越直接;充分理解代入消元法和加减法解方程的优点和缺点,有关这一方面的题目要让学生充分讨论、交流、合作,其理解才会深刻 【知识与能力目标】1.会解三元一次方程组.2.感受“三元”化归到“二元”,再由“二元”化归到“一元”的数学思想.【过程与方法目标】经历探索三元一次方程组解题的过程,体会其内涵.【情感态度价值观目标】培养数学化归思想,使学生真正体验到数学的应用价值. 教学重难点【教学重点】掌握三元一次方程组的解法.【教学难点】三元一次方程组如何化归到二元一次方程组.1. 教学过程一、知识回顾1.解二元一次方程组有哪几种方法?2.解二元一次方程组的基本思路是什么? 二、探索新知问题1.已知甲、乙、丙三数的和是23,甲数比乙数大1,甲数的两倍与乙数的和比丙数大20,求这三个数.(这里有三个要求的量,直接设出三个未知数列方程组,顺理成章,直截了当,容易理解)教师提问:如果设这三数分别为x,y,z,用它们可以表示哪些等量关系?预测学生回答:;教师提问:这个方程组和前面学过的二元一次方程组有什么区别和联系?预测学生回答:未知数个数和方程都比二元一次方程组多一个;未知数次数都是一次.活动:翻开书本,朗读三元一次方程组的概念:在这个方程组中,和都含有三个未知数,并且所含未知数的项的次数都是1,这样的方程叫做三元一次方程(linear equation with three unknowns). 像这样共含有三个未知数的三个一次方程所组成的一组方程,叫做三元一次方程组(system of linear equations with three unknowns)关注概念中的三个要点:未知数的个数;未知数的次数;未知数同时满足三个等量关系,三元一次方程组中各个方程的公共解,叫做这个三元一次方程组的解.目的:通过第1个活动,希望学生能找出等量关系,设出未知数建立方程,此环节既是学习了二元一次方程组后对建立方程组基本方法的练习,也通过类比引出本节课的要解决的问题解三元一次方程组.教学要求与效果:通过创设问题情境,引入新课,使学生了解三元一次方程组的概念及本节课要解决的问题,强调审题抓住的三个等量关系,从而表示成以上三个方程,这个问题的解答必须同时满足这三个条件,因此,把这三个方程联立起来,成为,引出三元一次方程组的概念.类比学习,探究新知内容:引导学生回顾前面所学二元一次方程组解法的基本指导思想消元,以及消元的基本方法(代入消元、加减消元),尝试对 进行消元,从而解决问题1.步骤(1)选取一种方法解此三元一次方程组,由学生独立思考解决,教师注意指导学生规范表达.步骤(2)在学生独立选择方法解决的基础上,引导学生进行比较:在解三元一次方程组时的消元与解二元一次方程组的消元有什么不同?解上面的方程组时,你能先消去未知数y(或z),从而得到方程组的解吗?(先让学生独立思考,然后在学生充分思考的前提下,进行小组讨论,在此基础上由学生代表回答,老师适时地引导与补充,力求通过学生观察、思考与讨论后能得出以下的一些要点)1.三元一次方程组的消元可以类比二元一次方程组的消元进行;2.用代入消元法:由于方程组式的特点,可将式分别代入式,消去x,从而转化为关于y,z的二元一次方程组的求解;3.用加减消元法:由于式中没有含z,可以将,式联立相加,消掉z,从而得到关于x, y的二元一次方程组的求解; 4.总结求解三元一次方程组的整体思路消元,实现三元二元一元的转化.在消元过程中,消“谁”都行,用那种消法(代入法、加减法)也可,但如果选择合适,可提高计算的效率. 目的:结合情境问题中列出的方程组,类比前面所学二元一次方程组的解法,得到解三元一次方程组的整体思路消元,并找出相应的消元方法.教学要求与效果:(1)教师板书用代入法消元的求解过程,强调解题的格式.求解完后引导学生总结三元一次方程组的求解思路:三元二元一元,关键在于消元;(2)引导学生类比一元二次方程组加减消元法对方程组进行消元.第三环节:理解巩固内容:解方程(1) (2)目的:方程组(1)是在课本例1的基础上,改变系数所得,因为本题的意图是让学生模仿老师的做法自行操作的第一题,所以尽量让各项系数简单一些,让学生练习感觉愉悦一些.方程组(2)的三个方程均含有三个未知数的三元一次方程组,和学生一起探求出解决的整体思路.然后让学生自行求解,使其进一步理解三元一次方程组的求解方法,培养计算能力.教学要求与效果:(1)引导学生观察方程组(2)的特点,此方程组与前面不一样,三个方程都不缺“谁”,消谁好,用什么方法消?(2)通过对(1)(2)的对比,引导学生总结出消元的具体做法是:如果已有某个未知数的表达式,直接用代入消元,否则常用加减消元.用加减消元时,如果方程组中有至少一个方程只有两个未知数,缺哪个未知数就消哪个.(3)在前面例题和练习的基础上,对本课解过的三个方程组进行比较,谈谈解决的方法.总结求解三元一次方程组的整体思路消元,实现三元二元一元的转化.在消元过程中,消“谁”都行,用那种消法(代入法、加减法)也可,但如果选择合适,可提高计算的效率. 具体做法是:如果已有某个未知数的表达式,直接用代入消元,否则常用加减消元.用加减消元时,如果方程组中有至少一个方程只有两个未知数,缺哪个未知数就消哪个.用加减消元时,如果方程组中三个方程均含有三个未知数,通常要进行两次消元才能转化为二元一次方程组.实际应用内容:某校初中三个年级共有651人,八年级的学生比九年级的学生人数多10%,七年级的学生比八年级多5%,求三个年级各有多少学生?解:由题意设七,八,九年级的学生人数分别为x,y,z人,得方程:由可将z用y表示,由可将x用y表示,代入可得到关于y的一元一次方程.解得: 所以,七,八,九年级的学生人数分别为231,220,200人.目的:运用数学知识解决实际问题是数学教学的重要内容.本环节回归用三元一次方程组解决实际应用问题,体现了数学来源于生活,又服务于生活,意在培养学生“用数学”的意识教学要求与效果:放手让学生用已经获取的经验去解决新的问题,由学生自己完成,让两个学生在黑板上规范的板书,教师巡视:发现学生的闪光点以及存在的问题并适时的加以辅导,以期学生在解答的过程中领会“代入消元法”的真实含义和“化归”的数学思想.三、归纳总结:内容:(1)三元一次方程组的概念;三元一次方程组二元一次方程组一元一次方程消元消元(2)三元一次方程组的解法;注意选好要消的“元”,选好要消的“法”:代入消元、加减消元;(3)谈谈求解多元一次方程组的思路,提炼化归的思想.目的:引导学生自己小结本节课的知识要点及数学方法
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 髋关节置换术后护理教学查房
- 汽车购车标准合同5篇
- 手足外伤康复护理查房
- 马蹄足内翻患者的护理
- 精神科护理康复训练
- 2025配偶之间房产赠与合同
- 公司校车安全培训会课件
- 生命科学科普讲解
- 数据化月度工作汇报
- 公司搬迁安全培训课件
- 老年照护芳香疗法应用规范
- 2025年高考语文真题全国一、二卷古诗词鉴赏
- 法拉利课件介绍
- 2025-2030年中国汽车电源管理IC行业市场现状供需分析及投资评估规划分析研究报告
- 2025至2030中国淀粉粘合剂行业现状调查与前景竞争对手分析报告
- 杉树林管理制度
- 农光互补光伏发电项目前景分析与可行性评估
- 学前儿童情绪管理与性格塑造研究
- 脑外伤的中医护理
- 2025年小学体育的考试题及答案
- 2025年江苏徐州贾汪区第二批公益性岗位招聘240人历年高频重点提升(共500题)附带答案详解
评论
0/150
提交评论