




已阅读5页,还剩9页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2012年高考第二轮复习专题素质测试题 圆锥曲线(文科)班别_学号_姓名_评价_(考试时间120分钟,满分150分,) 一、选择题(每小题5分,共60分. 以下给出的四个备选答案中,只有一个正确)1设抛物线y2=8x上一点P到y轴的距离是4,则点P到该抛物线的焦点的距离是()A 4 B. 6 C. 8 D. 122.若双曲线的离心率为2,则等于()A. 2 B. C. D. 13.已知双曲线的准线经过椭圆(b0)的焦点,则b=()A.3 B. C. D.4.已知抛物线的准线与圆相切,则p的值为()A. B.1 C.2 D.45.若双曲线的左焦点在抛物线y2=2px的准线上,则p的值为()A.2B.3 C.4 D.4 6已知双曲线的一个顶点到它的一条渐近线的距离为,则( )A1 B2 C3 D47已知、是椭圆的两个焦点,满足的点总在椭圆内部,则椭圆离心率的取值范围是 ()A B C D8双曲线的两个焦点为,若P为其上一点,且,则双曲线离心率的取值范围为() 9已知椭圆的左焦点为,右顶点为,点在椭圆上,且轴, 直线交轴于点若,则椭圆的离心率是()A B C D 10.设O为坐标原点,F1,F2是双曲线(a0,b0)的焦点,若在双曲线上存在点P,满足F1P F2=60,=a,则该双曲线的渐近线方程为()A. B. C. D. 11.椭圆的右焦点为F,其右准线与轴交点为A,在椭圆上存在点P满足线段AP的垂直平分线过点F,则椭圆离心率的取值范围是()A. B. C. D. 12.已知直线与抛物线C:相交A、B两点,F为C的焦点.若,则k=()A. B. C. D.二、填空题(本大题共4小题,每小题5分,共20分,把答案填在答题卡中对应题号后的横线上)13.若双曲线 (b0) 的渐近线方程为,则b等于 .14.已知圆C:.以圆C与坐标轴的交点分别作为双曲线的一个焦点和顶点,则适合上述条件的双曲线的标准方程为 .15.过双曲线C:的一个焦点作圆的两条切线, 切点分别为A.B,若(O是坐标原点),则双曲线线C的离心率为_.16.已知抛物线的准线为,过M(1,0)且斜率为的直线与相交于点A,与C的一个交点为B,若,则等于_.三、解答题(本大题共6小题,共70分,解答应写出文字说明.证明过程或演算步骤)17.(本题满分10分,)设,分别为椭圆的左右焦点,过的直线与椭圆相交于,两点,直线的倾斜角为,到直线的距离为.()求椭圆的焦距;()如果,求椭圆的方程.18.(本题满分12分,)已知定点,定直线,不在轴上的动点P与点F的距离是它到直线的距离的2倍,设点P的轨迹为E,过点F的直线交E于B、C两点,直线AB、AC分别交于点M、N.() 求E的方程;()试判断以线段MN为直径的圆是否过点F,并说明理由.19(本题满分12分,)已知中心在原点的双曲线的一个焦点是,一条渐近线的方程是()求双曲线的方程;()若以为斜率的直线与双曲线相交于两个不同的点,且线段的垂直平分线与两坐标轴围成的三角形的面积为,求的取值范围20.(本题满分12分,)如图,已知抛物线与圆相交于A、B、C、D四个点.()求的取值范围()当四边形ABCD的面积最大时,求对角线AC、BD的交点P的坐标.21(本题满分12分,设椭圆中心在坐标原点,是它的两个顶点,直线与AB相交于点D,与椭圆相交于E、F两点()若,求的值;()求四边形面积的最大值22. (本题满分12分,) 已知抛物线的焦点为F,过点的直线与相交于、两点,点A关于轴的对称点为D .()证明:点在直线上;()设,求的内切圆的方程 .参考答案:一、选择题答题卡:题号123456789101112答案BBCCCDCBDDDD二、填空题13. 1 . 14. 15. 2 . 16. 2 . 三、解答题(本大题共6小题,共70分,解答应写出文字说明.证明过程或演算步骤)17.18.解:()设,则,化简得: ()由当直线BC与轴不垂直时,设BC的方程为,与双曲线方程联立消去得,由题意知且,设,则,.,所以直线AB的方程为,因此M点的坐标为.,同理可得因此 当直线BC与轴垂直时,设BC的方程为,则,AB的方程为,因此M的坐标为,,同理得,因此. 综上 . ,即,故以线段MN为直径的圆过点F. (12分)19()解:设双曲线的方程为,由题设得 解得所以双曲线的方程为()解:设直线的方程为,点,的坐标满足方程组将式代入式,得,整理得此方程有两个不等实根,于是,且整理得 由根与系数的关系可知线段的中点坐标满足,从而线段的垂直平分线的方程为此直线与轴,轴的交点坐标分别为,由题设可得整理得,将上式代入式得,整理得,解得或所以的取值范围是20. 解:()将抛物线代入圆的方程,消去,整理得 与有四个交点的充要条件是:方程有两个不相等的正根由此得解得.又,所以的取值范围是.(II) 设四个交点的坐标分别为、.则由(I)根据韦达定理有,则令,则 下面求的最大值.方法1:由三次均值有: 当且仅当,即时取最大值.经检验此时满足题意.方法2:设四个交点的坐标分别为、则直线AC、BD的方程分别为解得点P的坐标为.设,由及()得由于四边形ABCD为等腰梯形,因而其面积则将,代入上式,并令,得,令得,或(舍去)当时,;当时;当时,故当且仅当时,有最大值,即四边形ABCD的面积最大,故所求的点P的坐标为.21()解:依题设得椭圆的方程为,直线的方程分别为,如图,设,其中,DFByxAOE且满足方程,故由知,得;由在上知,得所以,化简得,解得或()解法一:根据点到直线的距离公式和式知,点到的距离分别为,又,所以四边形的面积为,当,即当时,上式取等号所以的最大值为解法二:由题设,设,由得,故四边形的面积为,当时,上式取等号所以的最大值为22.()证明:设,直线的方程为, 由得,从而.0,或1.直线BD的方程为,当时,解得,所以点在直线BD上.()由()知,.由得,即,从而.所以直线的方程为,即.由(
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 8《我们受特殊保护》第二课时(教学设计)部编版道德与法治六年级上册
- 高中信息技术粤教版选修4教学设计-4.3.4 创建“密码验证”窗体-
- 第四节 现代通信教学设计-2025-2026学年初中物理鲁科版五四学制九年级下册-鲁科版五四学制2012
- 2025年中考数学总复习《等腰三角形》专项检测卷(附答案)
- 2.2.2生物对环境的适应和影响说课稿-2024-2025学年苏科版生物七年级上册
- 2025年全国育婴师职业技能鉴定中级考试题库(含答案)
- 2025年高考数学试题分类汇编:平面向量与复数(试卷+解析)
- 2025年山东省泰安市中考生物试题及答案
- 小班师德师风题目及答案
- 《2025企业员工聘用劳务合同》
- 2025至2030中国中医馆行业市场发展分析及前景趋势与投资机会报告
- 2024-2025学年云南省楚雄州统编版四年级下册期末考试语文试卷
- 贵州省黔南州2024-2025学年八年级下学期期末道德与法治试题(含答案)
- 2025-2026学年湘美版(2024)初中美术七年级上册教学计划及进度表
- 农村集体三资管理课件
- 2025年sca感官考试题库
- 慢性阻塞性肺气肿急性发作急救与护理
- 统编版(2024)八年级上册道德与法治期末复习全册知识点考点提纲
- 酿造酱油测试题及答案
- 2025年卫生资格(中初级)-超声波医学主治医师历年参考题库含答案解析(5套100道合辑-单选题)
- 2025年军人适应测试题及答案大全
评论
0/150
提交评论