




已阅读5页,还剩44页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
第7讲直线与圆锥曲线的位置关系 2014年高考会这样考 1 考查圆锥曲线中的弦长问题 直线与圆锥曲线方程的联立 根与系数的关系 整体代入和设而不求的思想 2 考查圆锥曲线中的最值 定点 定值问题 考点梳理 判断直线l与圆锥曲线c的位置关系时 通常将直线l的方程ax by c 0 a b不同时为0 代入圆锥曲线c的方程f x y 0 消去y 也可以消去x 得到一个关于变量x 或变量y 的一元方程 1 当a 0时 设一元二次方程ax2 bx c 0的判别式为 则 0 直线与圆锥曲线c 1 直线与圆锥曲线的位置关系 相交 0 直线与圆锥曲线c 0 直线与圆锥曲线c 2 当a 0 b 0时 即得到一个一次方程 则直线l与圆锥曲线c相交 且只有一个交点 此时 若c为双曲线 则直线l与双曲线的渐近线的位置关系是 若c为抛物线 则直线l与抛物线的对称轴的位置关系是 1 圆锥曲线的弦长直线与圆锥曲线相交有两个交点时 这条直线上以这两个交点为端点的线段叫做圆锥曲线的弦 就是连接圆锥曲线上任意两点所得的线段 线段的长就是弦长 2 圆锥曲线的弦长 无公共点 相切 平行 平行 2 圆锥曲线的弦长的计算 一种方法点差法 在求解圆锥曲线并且题目中交代直线与圆锥曲线相交和被截的线段的中点坐标时 设出直线和圆锥曲线的两个交点坐标 代入圆锥曲线的方程并作差 从而求出直线的斜率 然后利用中点求出直线方程 点差法 的常见题型有 求中点弦方程 求 过定点 平行弦 弦中点轨迹 垂直平分线问题 必须提醒的是 点差法 具有不等价性 即要考虑判别式 是否为正数 助学 微博 1 已知直线x y 1 0与抛物线y ax2相切 则a等于 答案c 考点自测 答案c a 1条b 2条c 3条d 4条解析结合图形分析可知 满足题意的直线共有3条 直线x 0 过点 0 1 且平行于x轴的直线以及过点 0 1 且与抛物线相切的直线 非直线x 0 答案c 3 过点 0 1 作直线 使它与抛物线y2 4x仅有一个公共点 这样的直线有 4 2013 福州模拟 已知双曲线e的中心为原点 f 3 0 是e的焦点 过f的直线l与e相交于a b两点 且ab的中点为n 12 15 则e的方程为 答案b 答案 1 5 5 考向一直线与圆锥曲线位置关系的应用 1 如果点q的坐标是 4 4 求此时椭圆c的方程 2 证明 直线pq与椭圆c只有一个交点 审题视点 1 由已知条件建立方程组求解 2 将直线方程与椭圆方程联立 证明方程组有唯一解 1 求圆锥曲线方程 一般是根据已知条件建立方程组求a b的值 2 研究直线和圆锥曲线的位置关系 一般转化为研究其直线方程与圆锥曲线方程组成的方程组解的个数 1 求椭圆e的方程 2 设动直线l y kx m与椭圆e有且只有一个公共点p 且与直线x 4相交于点q 试探究 在坐标平面内是否存在定点m 使得以pq为直径的圆恒过点m 若存在 求出点m的坐标 若不存在 说明理由 解 1 因为 ab af2 bf2 8 即 af1 f1b af2 bf2 8 又 af1 af2 bf1 bf2 2a 所以4a 8 a 2 因为动直线l与椭圆e有且只有一个公共点p x0 y0 所以m 0且 0 即64k2m2 4 4k2 3 4m2 12 0 化简得4k2 m2 3 0 审题视点 1 根据顶点坐标与离心率以及椭圆中的恒等式建立方程求解 2 先联立直线与椭圆的方程 利用弦长公式求 mn 再将面积表达出来 最后解方程 考向二圆锥曲线中的弦长问题 直线与圆锥曲线的弦长问题 较少单独考查弦长的求解 一般是已知弦长的信息求参数或直线 圆锥曲线的方程 解此类题的关键是设出交点的坐标 利用根与系数的关系得到弦长 将已知弦长的信息代入求解 1 求e的离心率 2 设点p 0 1 满足 pa pb 求e的方程 1 求椭圆的方程 2 设a b是椭圆上位于x轴上方的两点 且直线af1与直线bf2平行 af2与bf1交于点p 考向三圆锥曲线中的定点 定值问题 ii 求证 pf1 pf2 是定值 审题视点 1 把两点坐标代入椭圆方程 利用椭圆中相关的参数关系与离心率的公式可以求得b2 1 a2 2 求得椭圆的方程 2 利用椭圆的几何性质 结合直线与椭圆的位置关系 通过函数与方程思想来解决相应的斜率问题 并证明对应的定值 以直线与圆锥曲线的位置关系为背景的证明题常见的有 证明直线过定点和证明某些量为定值 而解决这类定点与定值问题的方法有两种 一是研究一般情况 通过逻辑推理与计算得到定点或定值 这种方法难度大 运算量大 且思路不好寻找 另外一种方法就是先利用特殊情况确定定点或定值 然后验证 这样在整理式子或求值时就有了明确的方向 1 求曲线c1的方程 2 设p x0 y0 y0 3 为圆c2外一点 过p作圆c2的两条切线 分别与曲线c1相交于点a b和c d 证明 当p在直线x 4上运动时 四点a b c d的纵坐标之积为定值 训练3 2012 湖南 在直角坐标系xoy中 曲线c1上的点均在圆c2 x 5 2 y2 9外 且对c1上任意一点m m到直线x 2的距离等于该点与圆c2上点的距离的最小值 法二由题设知 曲线c1上任意一点m到圆心c2 5 0 的距离等于它到直线x 5的距离 因此 曲线c1是以 5 0 为焦点 直线x 5为准线的抛物线 故其方程为y2 20 x 2 证明当点p在直线x 4上运动时 p的坐标为 4 y0 又y0 3 则过p且与圆c2相切的直线的斜率k存在且不为0 每条切线都与抛物线有两个交点 切线方程为y y0 k x 4 即kx y y0 4k 0 命题研究 通过近三年的高考试题分析 数形结合 代数运算 基础知识和基本方法的综合运用是解析几何综合类试题的命题重点 大多数情况下以直线与圆锥曲线相交的形式出现 考查圆锥曲线的概念和性质 轨迹与轨迹方程的求法 与圆锥曲线相关的最值 定值 探索性等问题 题型大多是解答题 题目难度大 规范解答15 圆锥曲线中的探索性问题 1 求椭圆c的方程 2 在椭圆c上 是否存在点m m n 使得直线l mx ny 1与圆o x2 y2 1相交于不同的两点a b 且 oab的面积最大 若存在 求出点m的坐标及相对应的 oab的面积 若不存在 请说明理由 教你审题 第 1 问 由椭圆的离心率和椭圆上的点到q 0 2 的距离的最大值为3这两个条件 可求得椭圆方程 第 2 问 先假设存在满足条件的点m 将其代入椭圆方程 得出m n的一个关系式 再在 oab中 由直线l与圆o相交于不同的两点 得 0 由根与系数的关系 利用设而不求的方法表示出 oab的面积 结合前面所得到的m n的关系式和 0的限制条件 可判断点m是否存在 阅卷老师手记 1 本题是圆锥曲线中的探索性问题 也是最值问题 求圆锥曲线的最值问题是高考考查的一个重点 通常是先建立一个目标函数 然后利用函数的单调性或基本不等式求最值 2 本题的第一个易错点是表达不出椭圆c上的点到q 0 2 的距离的最大值 第二个易错点是没有掌握探索性问题的解题步骤 第三个易错点是没有正确使用基本不等式 探索性问题答题模板 第一步 假设结论存在 第二步 结合已知条件进行推理求解 第三步 若能推出合理结果 经验证成立即可肯定正确 若推出矛盾 即否定假设 3 是否存在实数k 直线y kx 2交椭圆于p q两点 以pq为直径的圆过点d 1 0 若存在 求出k
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 时间状语从句课件导入
- 护士带教师资培训
- 网络暴力幼儿课件
- 创意画冲浪课件
- 时尚表演基础知识培训课件
- 二零二五年度珠宝行业知识产权保护合同
- 二零二五年钢筋工程新技术研发与应用合同
- 2025版智慧社区智能家居设计代理合同
- 二零二五年调味品品牌孵化与推广合作协议
- 二零二五年度心理咨询劳务服务居间合同
- 气道异物梗阻现场急救
- 实验室6s管理制度
- 模具部奖惩管理制度
- 2025年新高考1卷(新课标Ⅰ卷)英语试卷
- 2025年网络安全与信息化考试试题及答案
- 《基于单元的高中英语项目式学习设计研究》
- 应急救援互助合同协议书
- (高清版)DG∕TJ 08-2284-2018 城市道路和桥梁数据采集标准
- 2025年北京市海淀区高三二模英语试卷(含答案)
- 医院改建可行性研究报告
- 2025保定市涞水县涞水镇社区工作者考试真题
评论
0/150
提交评论