2011年高三数学复习统计案例部分.doc_第1页
2011年高三数学复习统计案例部分.doc_第2页
2011年高三数学复习统计案例部分.doc_第3页
2011年高三数学复习统计案例部分.doc_第4页
2011年高三数学复习统计案例部分.doc_第5页
已阅读5页,还剩8页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

优质教育 卓越未来统计案例基础自测1.对有线性相关关系的两个变量建立的回归直线方程=+x中,回归系数与0的大小关系为 .(填序号)大于或小于大于小于不小于答案 2.如果有90%的把握说事件A和B有关系,那么具体计算出的数据2 2.706.(用“”,“”,“=”填空)答案 3.对两个变量y与x进行回归分析,分别选择不同的模型,它们的相关系数r如下,其中拟合效果最好的模型是 .模型的相关系数r为0.98模型的相关系数r为0.80模型的相关系数r为0.50模型的相关系数r为0.25答案 4.下列说法中正确的有:若r0,则x增大时,y也相应增大;若r0,则x增大时,y也相应增大;若r=1或r=-1,则x与y的关系完全对应(有函数关系),在散点图上各个点均在一条直线上 .答案 例1 (14分)调查339名50岁以上人的吸烟习惯与患慢性气管炎的情况,获数据如下:患慢性气管炎未患慢性气管炎总计吸烟43162205不吸烟13121134合计56283339试问:(1)吸烟习惯与患慢性气管炎是否有关?(2)用假设检验的思想给予证明.(1)解 根据列联表的数据,得到2=2分=7.4696.6356分所以有99%的把握认为“吸烟与患慢性气管炎有关”.9分(2)证明 假设“吸烟与患慢性气管炎之间没有关系”,由于事件A=26.6350.01,即A为小概率事件,而小概率事件发生了,进而得假设错误,这种推断出错的可能性约有1%.14分例2 一台机器使用时间较长,但还可以使用.它按不同的转速生产出来的某机械零件有一些会有缺点,每小时生产有 缺点零件的多少,随机器运转的速度而变化,下表为抽样试验结果:转速x(转/秒)1614128每小时生产有缺点的零件数y(件)11985(1)对变量y与x进行相关性检验;(2)如果y与x有线性相关关系,求回归直线方程;(3)若实际生产中,允许每小时的产品中有缺点的零件最多为10个,那么,机器的运转速度应控制在什么范围内?解 (1)=12.5, =8.25,=438,4=412.5,=660,=291,所以r=0.995 4.因为rr0.05,所以y与x有很强的线性相关关系.(2)=0.728 6x-0.857 1.(3)要使100.728 6x-0.857 110,所以x14.901 3.所以机器的转速应控制在14.901 3转/秒以下.例3 下表是某年美国旧轿车价格的调查资料,今以x表示轿车的使用年数,y表示相应的年均价格,求y关于x的回归 方程.使用年数x12345678910年均价格y(美元)2 6511 9431 4941 087765538484290226204解 作出散点图如图所示.可以发现,各点并不是基本处于一条直线附近,因此,y与x之间应是非线性相关关系.与已学函数图象比较,用=e 来刻画题中模型更为合理,令=ln,则=x+,题中数据变成如下表所示:x12345678910z7.8837.5727.3096.9916.6406.2886.1825.6705.4215.318相应的散点图如图所示,从图中可以看出,变换的样本点分布在一条直线附近,因此可以用线性回归方程拟合.由表中数据可得r-0.996.|r|r0.05.认为x与z之间具有线性相关关系,由表中数据得-0.298,8.165,所以=-0.298x+8.165,最后回代=ln,即=e-0.298x+8.165为所求.1.某班主任对全班50名学生学习积极性和对待班级工作的态度进行了调查,统计数据如下表所示: 积极参加班级工作不太主动参加班级工作合计学习积极性高18725学习积极性一般61925合计242650(1)如果随机抽查这个班的一名学生,那么抽到积极参加班级工作的学生的概率是多少?抽到不太主动参加班级工作且学习积极性一般的学生的概率是多少?(2)试运用独立性检验的思想方法分析:学生的学习积极性与对待班级工作的态度是否有关系?说明理由.解 (1)随机抽查这个班的一名学生,有50种不同的抽查方法,由于积极参加班级工作的学生有18+6=24人,所以有24种不同的抽法,因此由古典概型的计算公式可得抽到积极参加班级工作的学生的概率是P1=,又因为不太主动 参加班级工作且学习积极性一般的学生有19人,所以抽到不太主动参加班级工作且学习积极性一般的学生的概率是P2=.(2)由统计量的计算公式得=11.538,由于11.53810.828,所以可以有99.9%的把握认为“学生的学习积极性与对待班级工作的态度有关系”.2.某个体服装店经营某种服装,一周内获纯利y(元)与该周每天销售这种服装的件数x之间的一组数据如下: x3456789y66697381899091已知=280, =45 309, =3 487,此时r0.05=0.754.(1)求,;(2)判断一周内获纯利润y与该周每天销售件数x之间是否线性相关,如果线性相关,求出回归直线方程.解 (1)=(3+4+5+6+7+8+9)=6,= (66+69+73+81+89+90+91)79.86.(2)根据已知=280, =45 309, =3 487,得相关系数r=0.973.由于0.9730.754,所以纯利润y与每天销售件数x之间具有显著线性相关关系.利用已知数据可求得回归直线方程为=4.746x+51.386.3.某种书每册的成本费y(元)与印刷册数x(千册)有关,经统计得到数据如下:x123510203050100200y10.155.524.082.852.111.621.411.301.211.15检验每册书的成本费y与印刷册数的倒数之间是否具有线性相关关系,如有,求出y对x的回归方程.解 首先作变量置换,令u=,题目所给数据变成如下表所示的10对数据:u10.50.330.20.10.050.030.020.010.005y10.155.524.082.852.111.621.411.301.211.15然后作相关性检验.经计算得r0.999 80.75,从而认为u与y之间具有线性相关关系.由公式得1.125,8.973,所以=1.125+8.973u,最后回代u=,可得=1.125+,这就是题目要求的y对x的回归曲线方程.回归曲线的图形如图所示,它是经过平移的反比例函数图象的一个分支.一、填空题1.对于独立性检验,下列说法中正确的是 .的值越大,说明两事件相关程度越大的值越小,说明两事件相关程度越小2.706时,有90%的把握说事件A与B无关6.635时,有99%的把握说事件A与B有关答案 2.工人月工资y(元)依劳动生产率x(千元)变化的回归方程为=50+80x,下列判断正确的是 .劳动生产率为1 000元时,工资为130元劳动生产率提高1 000元时,工资平均提高80元劳动生产率提高1 000元时,工资平均提高130元当月工资为210元时,劳动生产率为2 000元答案 3.下面是22列联表: y1y 2合计x1a2173x2222547合计b46120则表中a,b的值分别为 .答案 52,744.实验测得四组(x,y)的值为(1,2),(2,3),(3,4),(4,5),则y与x之间的回归直线方程为 .答案 =x+15.在一次试验中,当变量x的取值分别为1,,时,变量y的值分别为2,3,4,5,则y与的回归曲线方程为 .答案 =+16.在一次对性别与说谎是否有关的调查中,得到如下数据: 说谎不说谎合计男6713女8917合计141630根据表中数据,得到如下结论中不正确的是 .在此次调查中有95%的把握认为是否说谎与性别有关在此次调查中有99%的把握认为是否说谎与性别有关在此次调查中有99.5%的把握认为是否说谎与性别有关在此次调查中没有充分的证据显示说谎与性别有关答案 7.为了判断高中三年级学生是否选修文科与性别的关系,现随机抽取50名学生,得到如下22列联表: 理科文科男1310女720已知P(3.841)0.05,P(5.024)0.025.根据表中数据,得到=4.844.则认为选修文科与性别有关系出错的可能性为 .答案 5%8.为了探究电离辐射的剂量与人体的受损程度是否有关,用两种不同剂量的电离辐射照射小白鼠,在照射后14天的结果如下表所示:死亡存活合计第一种剂量141125第二种剂量61925合计203050进行统计分析时的统计假设是: .答案 小白鼠的死亡与剂量无关二、解答题9.在一次飞机航程中调查男女乘客的晕机情况,其二维条形图如图:(1)写出22列联表;(2)判断晕机与性别是否有关?解 (1)晕机不晕机合计男107080女102030合计2090110(2)=6.3665.024,故有97.5%的把握认为“晕机与性别有关”.10.某地10户家庭的年收入和年饮食支出的统计资料如下表: 年收入x(万元)24466677810年饮食支出y(万元)0.91.41.62.02.11.91.82.12.22.3(1)根据表中数据,确定家庭的年收入和年饮食支出之间是否具有相关关系;若具有相关关系求出y与x的回归直线方程;(2)如果某家庭年收入为9万元,预测其年饮食支出.解 (1)由题意知,年收入x为解释变量,年饮食支出y为预报变量,作散点图(如图所示).从图中可以看出,样本点呈条状分布,年收入和年饮食支出有比较好的线性相关关系,因此可以用回归直线方程刻画它们之间的关系.=6, =1.83,=406,=35.13,=117.7,0.172,=- =1.83-0.1726=0.798.从而得到回归直线方程为=0.172x+0.798.(2)当x=9时,=2.346.因此,某家庭年收入9万元,其年饮食支出大约为2.346万元.11.测得某国家10对父子身高(单位:英寸)如下:父亲身高(x)60626465666768707274儿子身高(y)63.665.26665.566.967.167.468.370.170(1)对变量y与x进行相关性检验;(2)如果y与x之间具有线性相关关系,求回归直线方程;(3)如果父亲的身高为73英寸,估计儿子的身高.解 (1)=66.8,=67.01,=44 794,=44 941.93,=4 476.268,=4 462.24,4 490.34, =44 842.4.所以r=0.980 4.因为rr0.05,所以y与x之间具有线性相关关系.(2)设回归直线方程为.由=0.464 6.=67.01-0.464 666.835.974 7.故所求的回归直线方程为=0.464 6x+35.974 7.(3)当x=73英寸时,=0.464 673+35.974 769.9,所以当父亲身高为73英寸时,估计儿子的身高约为69.9英寸.12.在调查的480名男人中有38名患有色盲,520名女人中有6名患有色盲,分别利用图形和独立性检验的方法来判断色盲与性别是否有关?你所得到的结论在什么范围内有效?解 根据题目所给的数据作出如下的列联表:色盲不色盲合计男38442480女6514520合计449561 000根据列联表作

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论