



全文预览已结束
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2009 年 中 考 专 题 复 习(一)动点问题例1、如图,梯形OABC中,O为直角坐标系的原点,A、B、C的坐标分别为(14,0)、(14,3)、(4,3)。点P、Q同时从原点出发,分别作匀速运动。其中点P沿OA向终点A运动,速度为每秒1个单位;点Q沿OC、CB向终点B运动。当这两点中有一点到达自己的终点时,另一点也停止运动(1)设从出发起运动了秒,如果点Q的速度为每秒2个单位,试分别写出这时点Q在OC上或在CB上时的坐标(用含的代数式表示,不要求写出的取值范围);(2)设从出发起运动了秒,如果点P与点Q所经过的路程之和恰好为梯形OABC的周长的一半试用含的代数式表示这时点Q所经过的路程和它的速度;试问:这时直线PQ是否可能同时把梯形OABC的面积也分成相等的两部分?如有可能,求出相应5的的值和P、Q的坐标;如不可能,请说明理由1OPA(14,0)B(14,3)C(4,3)Qyx分析:本例是平面直角坐标系与方程、函数、不等式及几何型问题的综合题,解题关键是正确地用的代数式表示出点的坐标,特别注意直线PQ同时把梯形OABC的面积也分成相等的两部分要分两类讨论例2、如图,在直角梯形ABCD中,ADBC,C90,BC16,DC12,AD21。动点P从点D出发,沿射线DA的方向以每秒2两个单位长的速度运动,动点Q从点C出发,在线段CB上以每秒1个单位长的速度向点B运动,点P,Q分别从点D,C同时出发,当点Q运动到点B时,点P随之停止运动。设运动的时间为t(秒)。(1)设BPQ的面积为S,求S与t之间的函数关系式;(2)当t为何值时,以B,P,Q三点为顶点的三角形是等腰三角形?(3)当线段PQ与线段AB相交于点O,且2AOOB时,求BQP的正切值;(4)是否存在时刻t,使得PQBD?若存在,求出t的值;若不存在,请说明理由。例3、已知:如图所示,直线的解析式为,并且与轴、轴分别相交于点A、B。(1) 求A、B两点的坐标。(2) 一个圆心在坐标原点、半径为1的圆,以0.4个单位每秒的速度向轴正方向运动,问什么时刻该圆与直线相切;(3),在题(2)中,若在圆开始运动的同时,一动点P从B点出发,沿BA方向以0.5个单位秒的速度运动,问在整个运动的过程中,点P在动圆的园面(圆上和圆的内部)上共运动了多出时间?例4、如图,已知直线y = 2x(即直线)和直线(即直线),与x轴相交于点A。点P从原点O出发,向x轴的正方向作匀速运动,速度为每秒1个单位,同时点Q从A点出发,向x轴的负方向作匀速运动,速度为每秒2个单位。设运动了t秒.(1)求这时点P、Q的坐标(用t表示).(2)过点P、Q分别作x轴的垂线,与、分别相交于点O1、O2(如图16).以O1为圆心、O1P为半径的圆与以O2为圆心、O2Q为半径的圆能否相切?若能,求出t值;若不能,说明理由.以O1为圆心、P为一个顶点的正方形与以O2为中心、Q为一个顶点的正方形能否有无数个公共点?若能,求出t值;若不能,说明理由。AOyxPQO1O221(1)2)AOyx(QO1O221例5、已知二次函数的图象如图所示。 求二次函数的解析式及抛物线顶点M的坐标; 若点N为线段BM上的一点,过点N作轴的垂线,垂足为点Q。当点N在线段BM上运动时(点N不与点B,点M重合),设NQ的长为,四边形NQAC的面积为,求与之间的函数关系式及自变量的取值范围; 在对称轴右侧的抛物线上是否存在点P,使PAC为直角三角形?若存在,求出所有符合条件的点P的坐标;若不存在,请说明理由; 将OAC补成矩形,使上OAC的两个顶点成为矩形一边的两个顶点,第三个顶点落在矩形这一边的对边上,试直接写出矩形的未知的顶点坐标(不需要计算过程)。(二)探 究 题例6. (8分)如图所示,AB是O的直径,直线EF与O相交于C、D,AEEF于E,BFEF于F,在线段EF上是否存在点P,使得以P、A、E为顶点的三角形和以P、B、F为顶点的三角形相似?若不存在,说明理由;若存在,这样的点P共有几个?并指出点P在图形中的位置。例7. 下图中,图(1)是一个扇形AOB,将其作如下划分:第一次划分:如图(2)所示,以OA的一半OA1为半径画弧,再作AOB的平分线,得到扇形的总数为6个,分别为:扇形AOB,扇形AOC,扇形COB,扇形A1OB1,扇形A1OC1,扇形C1OB1;第二次划分:如图(3)所示,在扇形C1OB1中,按上述划分方式继续划分,可以得到扇形的总数为11个;第三次划分:如图(4)所示:依次划分下去。 (1) (2) (3) (4)(1)根据题意,完成下表:划分次数扇形总个数1621134n (2)根据上表,请你判断按上述划分方式,能否得到扇形的总数为2005个?为什么?例8. 下列各图是由小三角形拼凑而成的图形。 (1) (2) (3) (1)请观察每一个图形中小三角形的个数,并完成下表:层数n12345小三角形的总数m (2)根据上表中的数据,把n作为横坐标,把小三角形的总数m作为纵坐标,在平面直角坐标系中描出相应的各点(n,m)其中1n5; (3)请你猜一猜,上述各点会在某一函数图象上吗?如果在某一函数的图象上,请写出该函数的表达式。15. 已知抛物线y=x2+(2n-1)x+n2-1(n为常数) (1)当该抛物线经过坐标原点,并且顶点在第四象限时,求出它所对应的函数关系式;(2)设A是(1)所确定的抛物线上的一个动点,它位于x轴下方,且在对称轴左侧,过A作x轴的平行线,交抛物线于另一点D,再作ABx轴于B,DCx轴于C;当BC=1时,求矩形ABCD的周长;试问矩形ABCD的周长是否存在最大值?如果存在,请求出这个最大值,并指出此时A点的坐标;如果不存在,请说明理由。例9. 在数学活动中,小明为了求+的值(结果用n表示),设计如图1所示的几何图形。 (1)请你利用这个几何图形求+的值为 。 (2)请你利用图2,再设计一个能求+的值的几何图形。 (1) (2)例10. 用同样大小的黑、白两种颜色的棋子摆设如下图所示的正方形图案,则第n个图案需要用白色棋子 枚(用含有n的代数式表示)。 例11、(2005年常州)已知的半径为1,以为原点,建立如图所示的直角坐标系有一个正方形,顶点的坐标为(,0),顶点在轴上方,顶点在上运动(1)当点运动到与点、在一条直线上时,与相切吗?如果相切,请说明理由,并求出所在直线对应的函数表达式;如果不相切,也请说明理由;(2)设点的横坐标为,正方形的面积为,求出与的函数关系式,并求出的最大值和最小值例12(2005年武汉)将两块含30角且大小相同的直角三角板如图1摆放。(1)将图1中绕点C顺时针旋转45得图2,点与AB的交点,求证:;(2)将图2中绕点C顺时针旋转30到(如图3),点与AB的交点。线段之间存在一个确定的等量关系,请你写出这个关系式并说明理由;(3)将图3中线段绕点C顺时针旋转60到(如图4),连结,求证:AB. 例13、(2005年恩施)如图,AB为圆O的直径,C为圆O上一点,AD和过C点的直线互相垂直,垂足为D,且AC平分DAB,延长AB交DC于点E。(1)判定直线DE与圆O的位置关系,并说明你的理由;(2)求证:AC2=ADAB;(3)以下两个问题任选一题做答 若CFAB于点F,试讨论线段CF、CE和DE三者的数量关系;若EC=5,EB=5,求图中阴影部分的面积.例14,如图,在直角梯形ABCD中,ADBC,B = 90,AB =8,AD=24,BC=26,AB为O的直径。动点P从A点开始沿AD边向点D以1 cm/s的速度运动,动点Q从点C开始沿CB边向点B以3cm/s 的速度运动,P、Q 两点同时出发,当其中一点到达端点时,另一点也随之停止运动,设运动时间为 t s ,求:(1) t分别为何值时,四边形PQCD为平行四边形、等腰梯形?(2) t分别为何值时,直线PQ与O相交、相切、相离?例15: 如图2-5-40,在RtPMN中,P=900,PM=PN,MN=8,矩形ABCD的长和宽分别为8和2,C点和M点重合,BC和MN在一条直线上令RtPMN不动,矩形ABCD沿MN所在直线向右以每秒1的速度移动(图2-4-41),直到C点与N点重合为止设移动秒后,矩形ABCD与PMN重叠部分的面积为2求与之间的函数关系式 图5例16, (2007河南)如图,对称轴为直线的抛物线经过点A(6,0)和B(0,4)(1)求抛物线解析式及顶点坐标;(2)设点E(,)是抛物线上一动点,且位于第四象限,四边形OEAF是以OA为对角线的平行四边形求平行四边形OEAF的面积S与之间的函数关系式,并写出自变量的取值范围; 当平行四边形OEAF的面积为24时,请判断平行四边形OEAF是否为菱形?B(0,4)A(6,0)E
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 出租屋管理安全培训课件
- 文库发布:出师表课件
- 出国安全培训制度课件
- 2025年长期供货合同范本-涂料供应合同
- 出口许可证课件
- 冲积扇形成原因课件
- 2025全新升级计算机辅助卓越二手房买卖中介服务合同
- 2025农药买卖合同(除草剂)
- 2025上海市地方标准《融资租赁服务合同规范》编制说明
- 2025合同样本:健身房合作经营合同律师起草专业版
- 浙江工业大学学生综合测评分细则
- 英语初高中衔接音标
- 第十四章滚动轴承相关设计
- 第1章 数据与统计学-统计学
- GB/T 2059-2000铜及铜合金带材
- GB/T 14456.1-2017绿茶第1部分:基本要求
- 远离电子烟主题班会课件
- 设备维护保养手册
- ZYHZYHC系列自控远红外电焊条烘干炉使用说明书
- 外科学课件:泌尿、男生殖系统外科检查
- 高中政治统编版(2022)必修3(教案)我国法治建设历程(完整文档)
评论
0/150
提交评论