



全文预览已结束
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2.4绝对值1绝对值的概念及表示(1)绝对值的几何意义我们把在数轴上表示数a的点与原点的距离叫做数a的绝对值记作|a|.这是绝对值的几何意义,例如:10到原点的距离是10;10到原点的距离也是10,所以10与10的绝对值相等,都是10.记作:|10|10,|10|10.谈重点 绝对值的几何意义绝对值的几何意义与数的正、负无关,只与表示该数的点到原点的距离有关(2)绝对值的代数意义一个正数的绝对值是它本身;0的绝对值是0;一个负数的绝对值是它的相反数用字母表示为:若a0,则|a|a;若a0,则|a|a;若a0,则|a|0.也可以归纳如下:|a|或|a|从代数角度来看:绝对值实际上和四则运算“加、减、乘、除”一样,也是一种运算,绝对值运算的本质就是要把带有绝对值符号的数化为不带绝对值符号的数(即去绝对值)注意:既可以说0的绝对值是它本身,也可以说0的绝对值是它的相反数故绝对值是它本身的数是正数和0;绝对值是它的相反数的数是负数和0.【例1】 根据绝对值的概念,求下列各数的绝对值:1.6,0,10,10,a(a0)分析:,10是正数,绝对值等于其本身;1.6,10是负数,绝对值等于其相反数;0的绝对值是0;因为a0,所以a是负数,其绝对值等于它的相反数a.解:|1.6|1.6;|0|0;|10|10;|10|10;|a|(a0)a.2绝对值的非负性一个数的绝对值就是表示这个数的点到原点的距离由于距离是一个非负数,所以任何一个有理数的绝对值都是非负数,即无论a取何值,都有|a|0.例如|2|2,|2|2,|0|0.一个数在数轴上表示的点离原点的距离越远,绝对值越大;离原点越近,绝对值越小.0的绝对值可以看成是原点到原点的距离,因此仍然是0.谈重点 数的大小与绝对值大小的关系正数越大,它的绝对值越大;负数越小,它的绝对值越大;绝对值最小的数是0.【例2】 已知|x4|y1|0,求x,y的值分析:因为任何有理数的绝对值都是非负数,即|a|0,所以|x4|0,|y1|0,而两个非负数之和为0,则两个数均为0,所以可求出x,y的值解:因为|x4|0,|y1|0,又|x4|y1|0,所以只能|x4|0,|y1|0,即x40,y10,因此x4,y1.析规律 非负数的性质(1)若干个非负数的和仍是非负数;(2)有限个非负数的和为0,则每个非负数都为0;(3)非负数的最小值是0.3绝对值的求法(1)利用数轴确定一个数的绝对值时,首先确定这个数在数轴上表示的点,然后再看一下这个点到原点的距离即可(2)利用绝对值计算的法则,首先要判断这个数是正数、零,还是负数如果绝对值里面的数是非负数,那么这个数的绝对值就是它本身;如果绝对值里面的数是负数,那么这个数的绝对值就是它的相反数,此时去掉绝对值号时,就要把绝对值里的数添上括号,再在括号前面加上负号,如|5|(5)5.解技巧 求一个式子的绝对值的方法求一个式子的绝对值时,要先根据题意判断这个式子的正负性,再根据法则化去绝对值符号【例3】 (1)若a3,则|a3|_;(2)若a3,则|a3|_;(3)若a3,则|a3|_.解析:要想正确地化简|a3|的结果关键是确定a3的符号当a3时,a30,即a3为正数,由正数的绝对值是它本身,可得结果为a3;当a3时,a30,所以|a3|0|0;当a3时,a30,即a3为负数,由负数的绝对值等于它的相反数可得|a3|(a3)答案:(1)a3(2)0(3)(a3)解技巧 化简含有字母的式子的绝对值的方法化简含有字母的式子的绝对值时,必须先讨论这个式子的计算结果的正负性,否则会出现错误4绝对值的性质(1)任何一个有理数均有绝对值,这个绝对值是唯一的,并且任何一个有理数都不大于它的绝对值,即x|x|;(2)有理数的绝对值是一个非负数,即|x|0,绝对值最小的数是0,且无最大的绝对值;(3)绝对值等于其本身的数是正数或0.反过来,如果一个数的绝对值是其本身,那么这个数必是正数或0;(4)若两个数绝对值的和等于0,则这两个数分别等于0.即若|a|b|0,则a0,b0;(5)已知一个数的绝对值,那么它所对应的是两个互为相反数的数【例4】 如图,点a,b在数轴上对应的有理数分别为m,n,则a,b之间的距离是_(用含m,n的式子表示)解析:由点a,b在数轴上的位置可得,m0,n0,a,b间的距离ab|m|n|mn.答案:mn5利用数轴求绝对值问题一个数a的绝对值就是数轴上表示数a的点与原点的距离数a的绝对值记作|a|,例如|5|就是5到原点的距离正数的绝对值等于其本身,负数的绝对值为它的相反数总结得到:|a|可知:任何一个数的绝对值总是非负数,即|a|0.绝对值为本身的数是非负数;绝对值最小的数是0.从数轴上观察可知,绝对值为一个正数的数有两个,如|a|2,则a2.注意:从数轴上正负两个方向考虑解技巧 利用数轴解决绝对值问题已知一个数的绝对值求原数时,如果能充分地利用数轴的直观性,能够提高解题的正确性,避免漏解【例51】 实数a,b在数轴上的位置如图所示,那么化简|b|a|的结果是()aabbbacba dba解析:从数轴上可以看出a0,b0,所以b0,即b与a都是正数,它们的绝对值都等于本身,所以|b|a|ba.答案:d【例52】 已知a,b,c中的a,b均为负数,c为正数,且|b|a|c|,(1)在数轴上表示a,b,c的大致位置;(2)比较a,b,c的大小分析:(1)a,b在原点的左侧,c在原点的右侧,且b到原点的距离最大,a到原点的距离其次,c到原点的距离最小;(2)在数轴上表示的有理数,右边的数总大于左边的数解:(1)如图所示(2)bac.6.绝对值的化简和计算化简绝对值符号主要根据绝对值的非负性,解题时看清楚“”号在绝对值符号的里面还是外面如果“”号在绝对值符号的里面,化简时把“”号去掉;如果“”号在绝对值符号的外面,化简时不能把“”号去掉谈重点 化简绝对值符号的关键化简绝对值符号的关键是判断绝对值符号内的数是正数还是负数【例6】 化简(1);(2)|24|;(3);(4)|(7.5)|;(5)|(0)|.分析:先判断数的符号,再求绝对值解:(1);(2)|24|24;(3)3;(4)|(7.5)|7.5;(5)|(0)|0|0.7学习绝对值的五大误区误区一:认为|a|a.因为a可以表示正数、负数、0,由绝对值的意义可知,只有当a0时,|a|a才成立例如:已知实数a,b在数轴上的对应位置如图所示,则化简|a|a,而|b|b.误区二:误认为|a|b|,则ab.事实上,当|a|b|时,可能ab,也可能ab.绝对值从几何意义上来讲是表示某数的点与原点的距离,互为相反数的两个数,虽然分布在原点的两边,但离原点的距离相等,所以互为相反数的两个数绝对值是相等的,不能由两数绝对值相等就简单的断定两数相等,还有可能互为相反数误区三:忽略由绝对值求原数的双值特点误认为|x|a(a0),则xa.事实上,当|x|a(a0)时,xa.误区四:忽略“0”的特殊性“0的绝对值是0”可以做两种理解,一种是0的绝对值是它本身(和正数的绝对值相同),另一种是0的绝对值是它的相反数(和负数的绝对值相同)误区五:计算绝对值,混淆绝对值符号与括号的意义求多个数的绝对值的四则运算,应按顺序去掉绝对值后再进行运算解含绝对值与相反数双重运算的计算题,应分清层次按照题意一步一步计算【例71】 下面推理正确的是()a若|m|n|,则mnb若|m|n,则mnc若|m|n,则mnd若mn,则|m|n|解析:a中,若|m|n|,则mn;b中,若|m|n(n一定是非负数),则mn,例如|2|2,此时m2,n2,显然mn;c中,若|m|n,则mn或mn,例如|3|(3)(n一定是非正数),此时m3,n3,所以mn.答案:d【例72】 若m为有理数,且|m|m,那么m是()a非正数b非负数c负数d不为零的数解析:根据“正数或零”的绝对值等于它本身可知,m0,所以它的相反数m0,即非正数答案:a【例73】 填空:(1)(4)_;(2)|4|_
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025-2030动力电池回收利用产业现状及政策扶持方向分析
- 人力资源员工招聘流程优化方案
- 二年级数学上册课后辅导题解析合集
- 信息技术部年度工作总结范本
- 小学生艾滋病预防教育活动方案
- 动物营养与健康管理综合题库
- 光伏发电项目工程量计算与清单制作
- 一年级数学(上)计算题专项练习集锦
- 电气安全知识在线测试题库
- 处方审核关键点与医嘱执行表
- 长阳清江画廊
- 液压泵站使用说明书
- E190飞机舱门开关
- 儿科学腹泻病
- CT介入学及CT引导下肺穿活检术课件
- GB/T 3871.9-2006农业拖拉机试验规程第9部分:牵引功率试验
- GB/T 3836.4-2021爆炸性环境第4部分:由本质安全型“i”保护的设备
- GB 17840-1999防弹玻璃
- 文学鉴赏-课件
- 小军师面试万能绝杀模板-组织管理
- midasCivil斜拉桥分析课件
评论
0/150
提交评论