




免费预览已结束,剩余1页可下载查看
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
条件概率 教材分析 条件概率的概念在概率理论中占有十分重要的地位,本教科书中只是简单介绍条件概率的初等定义,更抽象的条件概率定义涉及测度论的知识,为便于学生理解,教科书一简单事例为载体,通过逐步探究,引导学生体会条件概率的思想。 教学目标【知识与能力目标】通过对具体情景的分析,了解条件概率的定义。【过程与方法目标】掌握一些简单的条件概率的计算。【情感态度价值观目标】通过对实例的分析,会进行简单的应用。 教学重难点【教学重点】条件概率定义的理解。【教学难点】概率计算公式的应用。 课前准备 与教材内容相关的资料 教学过程(一)复习引入:探究活动: 三张奖券中只有一张能中奖,现分别由三名同学无放回地抽取,问最后一名同学抽到中奖奖券的概率是否比前两名同学小.若抽到中奖奖券用“Y ”表示,没有抽到用“ ”,表示,那么三名同学的抽奖结果共有三种可能:Y,Y和 Y用 B 表示事件“最后一名同学抽到中奖奖券” , 则 B 仅包含一个基本事件Y由古典概型计算公式可知,最后一名同学抽到中奖奖券的概率为.思考:如果已经知道第一名同学没有抽到中奖奖券,那么最后一名同学抽到奖券的概率又是多少?因为已知第一名同学没有抽到中奖奖券,所以可能出现的基本事件只有Y和Y而“最后一名同学抽到中奖奖券”包含的基本事件仍是Y.由古典概型计算公式可知最后一名同学抽到中奖奖券的概率为,不妨记为P(B|A ) ,其中A表示事件“第一名同学没有抽到中奖奖券”.思考:你知道第一名同学的抽奖结果为什么会影响最后一名同学抽到中奖奖券的概率呢?在这个问题中,知道第一名同学没有抽到中奖奖券,等价于知道事件 A 一定会发生,导致可能出现的基本事件必然在事件 A 中,从而影响事件 B 发生的概率,使得 P ( B|A )P ( B ) .思考活动:对于上面的事件A和事件B,P ( B|A)与它们的概率有什么关系呢?用表示三名同学可能抽取的结果全体,则它由三个基本事件组成,即=Y, Y,Y既然已知事件A必然发生,那么只需在A=Y, Y的范围内考虑问题,即只有两个基本事件Y和Y在事件 A 发生的情况下事件B发生,等价于事件 A 和事件 B 同时发生,即 AB 发生而事件 AB 中仅含一个基本事件Y,因此=.其中n ( A)和 n ( AB)分别表示事件 A 和事件 AB 所包含的基本事件个数另一方面,根据古典概型的计算公式,其中 n()表示中包含的基本事件个数所以,=.因此,可以通过事件A和事件AB的概率来表示P(B| A )。(二)课堂设计1、定义 设A和B为两个事件,P(A)0,那么,在“A已发生”的条件下,B发生的条件概率(conditional probability ). 读作A 发生的条件下 B 发生的概率来源:学#科#网Z#X#X#K定义为.由这个定义可知,对任意两个事件A、B,若,则有.并称上式微概率的乘法公式2、P(B|A)的性质:(1)非负性:对任意的Af. ;(2)规范性:P(|B)=1;(3)可列可加性:如果是两个互斥事件,则.更一般地,对任意的一列两两部相容的事件(I=1,2),有 P =概率 P(B|A)与P(AB)的区别与联系联系:事件A,B都发生了 区别: 样本空间不同:在P(B|A)中,事件A成为样本空间;在P(AB)中,样本空间仍为W。3、 例题赏析:例1.在5道题中有3道理科题和2道文科题.如果不放回地依次抽取2 道题,求: (l)第1次抽到理科题的概率; (2)第1次和第2次都抽到理科题的概率; (3)在第 1 次抽到理科题的条件下,第2次抽到理科题的概率解:设第1次抽到理科题为事件A,第2次抽到理科题为事件B,则第1次和第2次都抽到理科题为事件AB. (1)从5道题中不放回地依次抽取2道的事件数为n()=20. 根据分步乘法计数原理,n (A)=12 于是 .(2)因为 n (AB)=6 ,所以. (3)解法 1 由( 1 ) ( 2 )可得,在第 1 次抽到理科题的条件下,第 2 次抽到理科题的概. 解法2 因为 n (AB)=6 , n (A)=12 ,所以.练习见课件例2.一张储蓄卡的密码共位数字,每位数字都可从09中任选一个某人在银行自动提款机上取钱时,忘记了密码的最后一位数字,求: (1)任意按最后一位数字,不超过 2 次就按对的概率; (2)如果他记得密码的最后一位是偶数,不超过2次就按对的概率解:设第i次按对密码为事件(i=1,2) ,则表示不超过2次就按对密码 (1
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025版医疗器械零容忍廉洁供应链合作协议
- 河北省承德县2025年上半年公开招聘城市协管员试题含答案分析
- 2025版基础设施建设借款合同模板
- 2025年地热能供暖水暖工程承包合同范本
- 海南省五指山市2025年上半年公开招聘村务工作者试题含答案分析
- 2025年度大豆产业链上下游合作协议
- 2025版汽车租赁押金合同范本资料正规范本
- 2025车库停车场消防设施维护合同
- 海南省澄迈县2025年上半年事业单位公开遴选试题含答案分析
- 2025年度吊车租赁设备操作风险控制合同范本
- 2025年国际法律合规与跨境经营风险试题及答案
- 脊髓损伤的康复课件
- 配电线路运维培训课件
- 酒店股东消费管理办法
- 《慢性萎缩性胃炎中西医结合诊疗专家共识(2025)》解读
- 新解读《碳纤维电热供暖系统应用技术规程 T-CCES 13 - 2020》解读
- 陶瓷彩绘说课课件
- DB3309∕T 114-2024 特定地域单元生态产品价值(VEP)核算技术规范 涉海地区
- 浙菜介绍课件教学
- 教师团队凝聚力培训
- 车间安全教育培训内容记录
评论
0/150
提交评论