




全文预览已结束
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
数学广角鸽巢问题教学反思麟游县西街小学董录田 2016.5.6.本节课是数学广角内容,“抽屉原理”实际上是一种解决某种特定结构的数学或生活问题的模型,体现了一种数学的思想方法。让学生经历将具体问题数学化的过程,初步形成模型思想,体会和理解数学与外部世界的紧密联系,发展抽象能力、推理能力和应用能力,是课标的重要要求。一、教材例题分析例1:本例描述“抽屉原理”的最简单的情况。着重探讨为什么这样的结论是成立的。教材呈现了两种思考方法:第一种方法是用操作的方法,罗列所有的方法,通过完全归纳的方法看到在这四种情况都是满足结论的;还可以是说理的方式,先放3支,在每个笔筒里放1支,这时剩下1支。剩下的1支不管放入哪一个笔筒中,这时都会有一个笔筒里有2支铅笔。这种方法比第一种方法更为抽象,更具有一般性。通过本例的教学,使学生感知这类问题的基本结构,掌握两种思考的方法枚举和假设,理解问题中关键词语“总有”和“至少”的含义,形成对“抽屉原理”的初步认识。例2:本例描述“抽屉原理”更为一般的形式,即“把多于(是正整数)个物体任意分放进个空抽屉里,那么一定有一个抽屉中放进了至少(+1)个物体”。教材首先探究把7本书放进3个抽屉里,总有一个抽屉里至少放进3本书的情形。当数据变得越来越大时,如果还用完全归纳的方法把所有的情形罗列出来的话,对于学生来说是有困难的。这时需要学生用到“反证法”这样一种思想,即如果所有的抽屉最多放2本,那么3个抽屉里最多放6本书,可是题目中是7本书,还剩1本书,怎么办?这就使学生明白只要放到任意一个抽屉里即可,总有一个抽屉里至少放进3本书。通过这样的方式,实际上学生是在经历“反证法”的这样一个过程。在具体编排这道例题的时候,在数据上进行了一个很细微的调整。在过去,由于数据的问题,学生会得到不太正确的推论,比如说如果是两个抽屉的话,最后得到的余数总是1,那么学生很容易得到一个错误的结论:总有一个抽屉里放进“商+余数”本书(因为余数正好是1)。而实际上,这里的结论应该是“商+1”本书,所以教材在这里呈现了8除以3余2的情况,这时候余数是2,可是最后的结论还是“把8本书放进3个抽屉里,总有一个抽屉至少放进了3本书”。通过这样的数据方面的调整,可以让学生得到一个更加正确的推论。例3:跟之前教材的编排是一样的,是抽屉原理的一个逆向的应用。要解决这个问题,可以把两种“颜色”看成两个“抽屉”,“同色”就意味着“同一个抽屉”。这样,就可以把“摸球问题”转化为“抽屉问题”。教材通过学生的对话,指出了可以通过先猜测再验证的方法来解决问题,也反映了学生在解决这个问题时可能会遇到的困难。很多学生误以为要摸5次才可以摸出球,这可以让学生通过实验来验证。二、教学反思1、确立教学目标和重难点经过教材分析我确立了教学重点:理解鸽巢原理,掌握先“平均分”,再调整的方法。教学难点:理解“总有”“至少”的意义,理解“至少数=商数1”。并注重在观察、实验、猜想、验证等活动中,发展学生合情推理能力,培养学生能进行有条理的思考,能比较清楚地表达自己的思考过程与结果,经历与他人合作交流解决问题的过程。2、从学生喜欢的“魔术”入手,设置悬念,激发学生学习的兴趣和求知欲望,从而提出需要研究的数学问题。3、在直观操作中理解“抽屉原理”的有关概念,初步了解“抽屉原理”的结构特征。在教学例1时,我通过直观地摆铅笔的经历,学生发现“把4支铅笔放进3个笔筒中”一共只有四种情况。同时我鼓励没有学具的学生通过画图直观的表达自己摆的结果,培养学生用简洁的图示表达思路的能力,并找一名学生板书,结合摆、图、数字化的表达共同展示结果。在对“至少”的理解中,我做了以下尝试:在“最多中找最少”。在呈现四种结果的基础上,我提问:看来,不管怎么放,总有一个铅笔盒放的枝数是最多的,同学们能找出来吗?(第一种摆法中,总有一个笔筒要放进4枝铅笔。第二种摆法中,总有一个笔筒要放进3枝铅笔。)师:4枝铅笔放进3个铅笔盒中,不管怎么摆总有一个铅笔盒放的枝数是最多的,可能是2枝、3枝、4枝。这句话还可以怎么说?(还可以说:总有一个铅笔盒中至少放进2枝铅笔。)师:总有是什么意思?至少是什么意思?4、引导学生在经历猜测、尝试、验证的过程中逐步从直观走向抽象。本单元的学习,教学的目的不是让学生计算抽屉原理,去应用,而更多的是给出一个结论,让学生去证明这种结论的正确性。这实质上是一种数学证明的思想的渗透教学。因此,教学时应让学生经历猜测、尝试、验证的探究过程,并在此过程中引导学生逐步从直观走向抽象。在例1中针对实验的所有结果,在学生总结表征的基础上,进而提出“你还可以怎样想?”的问题,组织学生展开讨论交流。我引导学生借助平均分即每个笔筒里先只放1支,这时学生看到还剩下1支铅笔,这1支铅笔不管放入其中的哪一个笔筒,这个笔筒都会有2支铅笔。进一步引导学生加深对“至少有一个笔筒中有2支铅笔”的理解。最后,组织学生进一步借助直观操作,讨论诸如“5支铅笔放进4个笔筒,不管怎么放,总有一个笔筒中至少有2支铅笔,为什么?”的问题,并不断改变数据(铅笔数比笔筒数多1),让学生继续思考,引导学生归纳得出一般性的结论:(+1)支铅笔放进个笔筒里,总有一个笔筒里至少放进2支铅笔。5、不足:(1)本节课虽然重视了学生的直观操作,但是结合操作让学生表达自己的证明过程还不足,应该有意识的让学生多表达结论推理的过程,培养学生证明思想及清晰的表达自己思路的能力。这一点本节课做的不够充分。(2)课后反思自己的教学过程,觉得可以在例1教学时,可以补充:“把5支铅笔放到3个铅笔
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
评论
0/150
提交评论